2.已知在(-∞,1]上遞減的函數(shù)f(x)=x2-2tx+1,且對(duì)任意的x1,x2∈[0,t+1],總有|f(x1)-f(x2)|≤2,則實(shí)數(shù)t的取值范圍為(  )
A.$[-\sqrt{2},\sqrt{2}]$B.$[1,\sqrt{2}]$C.[2,3]D.[1,2]

分析 由條件利用二次函數(shù)的性質(zhì)可得t≥1.故只要f(0)-f(t)≤2 即可,解不等式可求得t的范圍.

解答 解:由于函數(shù)f(x)=x2-2tx+1的圖象的對(duì)稱軸為x=t,
函數(shù)f(x)=x2-2tx+1在區(qū)間(-∞,1]上單調(diào)遞減,∴t≥1.
則在區(qū)間∈[0,t+1]上,0離對(duì)稱軸x=t最遠(yuǎn),
故要使對(duì)任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,
只要f(0)-f(t)≤2即可,即1-(t2-2t2+1)≤2,求得-$\sqrt{2}$≤t≤$\sqrt{2}$.
再結(jié)合t≥1,可得1≤t≤$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題主要二次函數(shù)的性質(zhì),注意討論對(duì)稱軸和區(qū)間的關(guān)系,不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2}則A∩B=( 。
A.{x|1≤x≤3}B.{x|0≤x≤3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,P為正方體ABCD-A1B1C1D1中AC1與BD1的交點(diǎn),則△PAC在該正方體各個(gè)面上的射影可能是(  )
A.①②③④B.①③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題p:若a<b,則?c∈R,ac2<bc2;命題q:?x0>0,使得x0-1+lnx0=0,則下列命題為真命題的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a=logπe,$b={2^{cos\frac{7π}{3}}}$,$c={log_3}sin\frac{17π}{6}$,則( 。
A.b>a>cB.b>c>aC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知1=x2+4y2-2xy(x<0,y<0),則x+2y的取值范圍為[-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,且短軸長為2,離心率等于$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若$\overrightarrow{MA}={λ_1}\overrightarrow{AF},\overrightarrow{MB}={λ_2}\overrightarrow{BF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$(1-\frac{1}{x}){(1+x)^7}$的展開式中項(xiàng)x4的系數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(1)=1,且f(x)滿足對(duì)任m,n∈[-1,1],有$\frac{f(m)+f(n)}{m+n}$>0.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0;
(2)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1]、a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.
(3)若f(x)≤t2-2at+2對(duì)所有x∈[-1,1],t∈[-1,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案