11.已知a=2sinx-1,那么a的取值范圍是[-3,1].

分析 利用正弦函數(shù)的值域,不等式的基本性質(zhì),求得a的范圍.

解答 解:∵sinx∈[-1,1],∴a=2sinx-1∈[-3,1],
故答案為:[-3,1].

點(diǎn)評 本題主要考查正弦函數(shù)的值域,不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.要將y=sin(2x+$\frac{π}{4}$)的圖象轉(zhuǎn)化為某一個偶函數(shù)圖象,只需將y=sin(2x+$\frac{π}{4}$)的圖象(  )
A.向左平移$\frac{π}{4}$個單位B.向左平移$\frac{π}{8}$個單位
C.向右平移$\frac{π}{4}$個單位D.向右平移$\frac{π}{8}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-a(1-$\frac{1}{x}$).
(1)若a=1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0,對任意的x≥1均成立,求實(shí)數(shù)a的取值范圍;
(3)求證:($\frac{2016}{2015}$)1008>e${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知cos($\frac{π}{6}$+α)=$\frac{4}{5}$,cos(β-$\frac{π}{3}$)=$\frac{5}{13}$,且-$\frac{2π}{3}$<α<-$\frac{π}{6}$<β<$\frac{π}{3}$,則cos(α-β)=$\frac{11}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求值:
(1)5cos180°-3sin90°+2tan0°-6sin270°;
(2)cos$\frac{π}{2}$-tan0+$\frac{1}{3}$tan2π-sin$\frac{3π}{2}$-cosπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a2=4,S5=30.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)試判斷數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}是什么數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)O是非直角三角形ABC外接圓的圓心,點(diǎn)M滿足$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$,用向量法證明:$\overrightarrow{BM}$⊥$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.化簡:$\frac{cos(π-α)tan(π+α)}{sin(2π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖在△ABC中,AB=5,cos∠ABC=$\frac{1}{5}$.
(I)若BC=4,求△ABC的面積;
(II)若D為AC邊的中點(diǎn),且BD=$\frac{7}{2}$,求邊BC的長.

查看答案和解析>>

同步練習(xí)冊答案