如圖所示,四棱錐,底面是邊長為的正方形,⊥面,,過點,連接
(Ⅰ)求證:;
(Ⅱ)若面交側棱于點,求多面體的體積.

(Ⅰ)略;(Ⅱ).

解析試題分析:(Ⅰ)利用線線垂直證明線面垂直;(Ⅱ)利用椎體體積公式,找高求面積.
試題解析:(Ⅰ)證明:PA⊥面ABCD,BC在面ABCD內,
∴ PA⊥BC  BA⊥BC,PA∩BA=A,∴BC⊥面PAB,
又∵AE在面PAB內∴ BC⊥AEAE⊥PB,BC∩PB="B,"
∴AE⊥面PBC又∵PC在面PBC內AE⊥PC, AF⊥PC, AE∩AF="A,"
∴PC⊥面AEF        6分
(Ⅱ) PC⊥面AEF, ∴ AG⊥PC, AG⊥DC ∴PC∩DC=C  AG⊥面PDC,
∵GF在面PDC內∴AG⊥GF△AGF是直角三角形,
由(1)可知△AEF是直角三角形,AE=AG=,EF=GF=  ∴, 又AF=,∴, PF=
     13分
考點:線面垂直的證明,體積求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面為平行四邊形,平面中點.

(1)求證:平面;
(2)若,求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求平面把長方體 分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點在平面ADC上的正投影O恰好落在線段上,如圖2所示,點分別為線段PC,CD的中點.

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點,使得到點P,O,C,F四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如左圖,四邊形中,的中點,,,,將左圖沿直線折起,使得二面角,如右圖.
(1)證明:平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,,⊥平面SAD,點的中點,且,.

(1)求四棱錐的體積;
(2)求證:∥平面;
(3)求直線和平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點在圓上,,于點,
平面,,
(1)證明:;
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點, ,

(1) 設的中點, 證明:平面;
(2) 證明:在內存在一點, 使平面, 并求點, 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為正方形,,
平面,為棱的中點.

(1)求證:平面平面
(2)求二面角的余弦值.
(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案