【題目】如圖,棱長為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點(diǎn)依次為、、、、、以及、、、、、.一只螞蟻欲從點(diǎn)出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)
【答案】
【解析】
根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點(diǎn)在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點(diǎn)間距離的三角函數(shù)表達(dá)式.根據(jù)所給參考數(shù)據(jù)即可得解.
棱長為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和.
將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:
則,所以;
將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:
則,所以;
因?yàn)?/span>,且由誘導(dǎo)公式可得,
所以最短距離為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(t為參數(shù),α∈[0,π).以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=ρcosθ+2,
(1)若,求直線的極坐標(biāo)方程
(2)若直線與曲線C有唯一公共點(diǎn),求α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,,為橢圓的左、右焦點(diǎn),M為橢圓上任意一點(diǎn),若的面積最大值為1.
(1)求橢圓C的方程;
(2)設(shè)不過原點(diǎn)的直線l:與橢圓C交于不同的兩點(diǎn)A、B,若直線l的斜率是直線、斜率的等比中項(xiàng),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:, 過點(diǎn)的直線:與橢圓交于M、N兩點(diǎn)(M點(diǎn)在N點(diǎn)的上方),與軸交于點(diǎn)E.
(1)當(dāng)且時(shí),求點(diǎn)M、N的坐標(biāo);
(2)當(dāng)時(shí),設(shè),,求證:為定值,并求出該值;
(3)當(dāng)時(shí),點(diǎn)D和點(diǎn)F關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,若△MNF的內(nèi)切圓面積等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期屮考試后,分別從兩個(gè)班級(jí)屮各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
p>成績不優(yōu)良 | |||
總計(jì) |
附: .
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com