【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線交橢圓E于A、M兩點(diǎn),點(diǎn)N在橢圓E上,且;
(1)當(dāng)時(shí),求的面積;
(2)當(dāng)時(shí),求證:.
【答案】(1) (2)證明見解析
【解析】
(1)由橢圓對(duì)稱性確定直線斜率為1,斜率為-1,求出點(diǎn)坐標(biāo)后可得三角形面積;
(2)由直線方程為求得點(diǎn)坐標(biāo)(橫坐標(biāo)即可),得,同理得(直線斜率為),利用得的方程,利用函數(shù)的知識(shí)(導(dǎo)數(shù))證明此方程的解在區(qū)間上.
(1)由橢圓對(duì)稱性知點(diǎn)M、N的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),且,
由題意,,方程為,于是可以設(shè)點(diǎn)其中,于是,解得,
所以.
(2)據(jù)題意,直線,聯(lián)立橢圓E,得:,
即:,則,那么,
同理,知:,
由,得:,即:.
令,則,
所以單調(diào)增,又,,
故存在唯一零點(diǎn),即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點(diǎn).設(shè)函數(shù).
(1)若函數(shù)在上無極值點(diǎn),求的取值范圍;
(2)求證:對(duì)任意實(shí)數(shù),在函數(shù)的圖象上總存在兩條切線相互平行;
(3)當(dāng)時(shí),若函數(shù)的圖象上存在的兩條平行切線之間的距離為4,問;這樣的平行切線共有幾組?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績低于87分的為“未達(dá)標(biāo)”,分?jǐn)?shù)不低于87分的為“達(dá)標(biāo)”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學(xué)生中從測(cè)試成績介于80~90之間的學(xué)生中任選2人,求至少有1人“達(dá)標(biāo)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓方程為,過點(diǎn)的直線l交橢圓于點(diǎn)A,B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:
(1)動(dòng)點(diǎn)P的軌跡方程;
(2)的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋果樹上隨機(jī)摘下了50個(gè)蘋果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計(jì)的莖葉圖如圖所示:
(Ⅰ)按分層抽樣的方法從單果直徑落在[80,85),[85,90)的蘋果中隨機(jī)抽取6個(gè),再從這6個(gè)蘋果中隨機(jī)抽取2個(gè),求這兩個(gè)蘋果單果直徑均在[85,90)內(nèi)的概率;
(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.已知該精準(zhǔn)扶貧戶有20000個(gè)約5000千克蘋果待出售,某電商提出兩種收購方案:
方案:所有蘋果均以5.5元/千克收購;
方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個(gè)蘋果,定價(jià)收購方式為:?jiǎn)喂睆?在[50,65)內(nèi)按35元/箱收購,在[65,90)內(nèi)按50元/箱收購,在[90,95]內(nèi)按35元/箱收購.包裝箱與分揀裝箱工費(fèi)為5元/箱.請(qǐng)你通過計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的真命題是( )
A. 若,則向量與的夾角為鈍角
B. 若,則
C. 若命題“是真命題”,則命題“是真命題”
D. 命題“,”的否定是“,”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com