【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為“未達(dá)標(biāo)”,分?jǐn)?shù)不低于87分的為“達(dá)標(biāo)”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1人“達(dá)標(biāo)”的概率.
【答案】(1)86,80.5;(2).
【解析】
(1)找出莖葉圖中出現(xiàn)次數(shù)最多的數(shù)為眾數(shù),根據(jù)平均數(shù)公式,即可求得平均數(shù);
(2)在被抽取的學(xué)生中,有2個(gè)“達(dá)標(biāo)”學(xué)生,4個(gè)“未達(dá)標(biāo)”學(xué)生,按達(dá)標(biāo)和不達(dá)標(biāo)兩類(lèi)編號(hào),列出從6人中任取2人的所有情況,統(tǒng)計(jì)出滿(mǎn)足條件的基本事件的個(gè)數(shù),根據(jù)古典概型的概率公式,即可求解.
(1)這組數(shù)據(jù)的眾數(shù)為86;
平均數(shù)為.
(2)在被抽取的學(xué)生中,有2個(gè)“達(dá)標(biāo)”學(xué)生,4個(gè)“未達(dá)標(biāo)”學(xué)生,
將“達(dá)標(biāo)”學(xué)生編號(hào)為,,“未達(dá)標(biāo)”學(xué)生編號(hào)為,,,,
則從6人中任取2人,有以下情況:
,,,,,,,,
,,,,,,.共15種.
其中符合條件的為,,,,,,
,,,共9種.
故至少有1人“達(dá)標(biāo)”的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)討論函數(shù)在R上的零點(diǎn)個(gè)數(shù),并求出相對(duì)應(yīng)的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上單調(diào)遞增,函數(shù)在上存在單調(diào)遞減區(qū)間.
(1)若“”為真,求實(shí)數(shù)的取值范圍;
(2)若“”為真,“”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形沿對(duì)角線(xiàn)折疊,使平面平面, 若直線(xiàn)平面,,.
求證:直線(xiàn)平面;
求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線(xiàn)與直線(xiàn)平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;
(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線(xiàn)交橢圓E于A、M兩點(diǎn),點(diǎn)N在橢圓E上,且;
(1)當(dāng)時(shí),求的面積;
(2)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“科技引領(lǐng),布局未來(lái)”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007年至2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營(yíng)收入的比值記為研發(fā)投入占營(yíng)收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營(yíng)收比用圖中的折線(xiàn)圖表示.
根據(jù)折線(xiàn)圖和條形圖,下列結(jié)論錯(cuò)誤的是( 。
A. 2012﹣2013 年研發(fā)投入占營(yíng)收比增量相比 2017﹣2018 年增量大
B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加
C. 2015﹣2016 年研發(fā)投入增值最大
D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營(yíng)收比逐年增加
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com