【題目】設(shè)集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.

【答案】
(1)解:集合A={x|x+2<0}=(﹣∞,﹣2),B={x|(x+3)(x﹣1)>0}=(﹣∞,﹣3)∪(1,+∞),

∴A∩B=(﹣∞,﹣3)


(2)解:由(1)可求A∪B=(﹣∞,﹣2)∪(1,+∞),

∴﹣2,1為方程ax2+2x+b=0的兩個(gè)根,且a>0,

∴﹣2+1=﹣ ,﹣2×1= ,

解得a=2,b=﹣4


【解析】(1)化集合A,B,即可確定出兩集合的交集;(2)確定出兩集合的并集,由不等式ax2+2x+b>0的解集為兩集合的并集,得到方程ax2+2x+b=0的兩根分別為﹣2和1,利用根與系數(shù)的關(guān)系即可求出a與b的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用集合的交集運(yùn)算,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲船以每小時(shí)15 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行40分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西45°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意 都有f(kx2)+f(2x﹣1)>0成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其東北方向與它相距海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處。

(Ⅰ)求此時(shí)該外國(guó)船只與島的距離;

(Ⅱ)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方向航行。為了將該船攔截在離海里處,不讓其進(jìn)入海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若對(duì)任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面區(qū)域D由以A(2,4)、B(5,2)、C(3,1)為頂點(diǎn)的三角形內(nèi)部和邊界組成,若在區(qū)域D上有無(wú)窮多個(gè)點(diǎn)(x,y)可使目標(biāo)函數(shù)z=x+my取得最小值,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R).
(1)若關(guān)于x的不等式f(x)≥0的解集為R,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)<0的解集是{x|b<x<2},求a,b的值;
(3)若關(guān)于x的不等式f(x)≤0的解集是 P,集合Q={x|0≤x≤1},若 P∩Q=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為2,前n項(xiàng)和為Sn , 且 = (n∈N*).
(1)求a2的值;
(2)設(shè)bn= ,求數(shù)列{bn}的通項(xiàng)公式;
(3)若am , ap , ar(m,p,r∈N* , m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn),那么異面直線OE和FD1所成的角的余弦值等于(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案