【題目】已知函數(shù)f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若對任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求實數(shù)m的取值范圍.
【答案】
(1)解:函數(shù)f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )]
=2cos(x+ )sin(x+ )﹣2 cos2(x+ )
=sin(2x+ )﹣2
=sin(2x+ )﹣ cos(2x+ )﹣
=2sin[(2x+ )﹣ ]﹣
=2sin(2x+ )﹣ ,
∴函數(shù)f(x)的最小正周期為T= = =π;
又﹣1≤sin(2x+ )≤1,
∴﹣2﹣ ≤2sin(2x+ )﹣ ≤2﹣ ,
即f(x)的值域為[﹣2﹣ ,2﹣ ];
(2)解:對任意x∈[0, ],[f(x)+ ]﹣2m=0成立,
∴[2sin(2x+ )﹣ + ]﹣2m=0,
即sin(2x+ )=m;
由x∈[0, ],得2x+ ∈[ , ],
∴sin(2x+ )∈[ ,1],
∴實數(shù)m的取值范圍是m∈[ ,1].
【解析】(1)化簡函數(shù)f(x)為正弦型函數(shù),求出它的最小正周期和值域;(2)對任意x∈[0, ],[f(x)+ ]﹣2m=0成立,等價于sin(2x+ )=m;求出x∈[0, ]時sin(2x+ )的值域即可.
科目:高中數(shù)學 來源: 題型:
【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.
(1)求橢圓的方程;
(2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A、B、C為△ABC的三內角,且其對邊分別為a、b、c,若acosC+ccosA=﹣2bcosA.
(1)求角A的值;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一同學在電腦中打出如下若干個圓:○●○○●○○○●○○○○●○○○○○●…,若依此規(guī)律繼續(xù)下去,得到一系列的圓,則在前2012個圓中共有●的個數(shù)是( )
A.61
B.62
C.63
D.64
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知c>0,設命題p:函數(shù)y=cx為減函數(shù);命題q:當x∈[,2]時,函數(shù)f(x)=x+> 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com