【題目】某商品最近30天的價格f(t)(元)與時間t滿足關(guān)系式:f(t)= ,且知銷售量g(t)與時間t滿足關(guān)系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
【答案】解:設(shè)W(t)表示商品的日銷售額(單位:元)與時間t的函數(shù)關(guān)系,則有:W(t)=f(t)g(t)
= =
= ,
當0≤t<15,t∈N+時,易得t=3時,W(t)取最大,且為W(3)=243;
當15≤t≤30,t∈N+時,[15,30]為減函數(shù),則t=15時,W(t)取最大,且為W(15)=195.
所以當t=3時,該商品的日銷售額最大,且為243
【解析】設(shè)W(t)表示商品的日銷售額(單位:元)與時間t的函數(shù)關(guān)系,則有:W(t)=f(t)g(t),對每段化簡和配方,根據(jù)二次函數(shù)的性質(zhì),分別求解每段函數(shù)的最大值,由此能求出商品的日銷售額W(t)的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足.
(1)求數(shù)列、的通項公式;
(2)是否存在自然數(shù),使得對于任意有恒成立?若存在,求出的最小值;
(3)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 bn .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{ }的前n項和;
(3)若cn=an( ) ,求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線過點P(﹣3,1),且與x軸,y軸分別交于A,B兩點.
(Ⅰ)若點P恰為線段AB的中點,求直線l的方程;
(Ⅱ)若 = ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C: 的長軸是短軸的兩倍,點在橢圓上.不過原點的直線l與橢圓相交于A、B兩點,設(shè)直線OA、l、OB的斜率分別為、、,且、、恰好構(gòu)成等比數(shù)列,記△的面積為S.
(1)求橢圓C的方程.
(2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由?
(3)求S的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意 都有f(kx2)+f(2x﹣1)>0成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若對任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
已知f(x)=,x∈[1,+∞).
(1)當a=時,求函數(shù)f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com