20.已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,正實(shí)數(shù)a,b滿足a+b=m.
(1)求m的值;
(2)求證:$\frac{1}{a}+\frac{1}$≥2.

分析 (1)利用絕對(duì)值不等式的性質(zhì)得出f(x)的最小值;
(2)把1=$\frac{1}{2}$(a+b)代入左側(cè),利用基本不等式得出結(jié)論.

解答 解:(1)f(x)=|x-2|+|x-4|≥|(x-2)-(x-4)|=2,當(dāng)且僅當(dāng)2≤x≤4時(shí)等號(hào)成立,
∴m=2.
(2)證明:∵a+b=2,∴$\frac{1}{2}$(a+b)=1,
∴$\frac{1}{a}+\frac{1}$=$\frac{a+b}{2a}+\frac{a+b}{2b}$=1+$\frac{2a}$+$\frac{a}{2b}$=1+$\frac{1}{2}$($\frac{a}$+$\frac{a}$)≥1+$\frac{1}{2}$×2=2.
當(dāng)且僅當(dāng)$\frac{a}=\frac{a}$即a=b=1時(shí)等號(hào)成立.

點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的性質(zhì),基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度,建立極坐標(biāo)系,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=sinα\\ y=cos2α\end{array}\right.$,($α∈[{0,\frac{π}{2}}]$,α為參數(shù)),曲線C2的極坐標(biāo)方程為$θ=-\frac{π}{6}$,求曲線C1與曲線C2的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的焦點(diǎn)為焦點(diǎn)的雙曲線,如果離心率為2,那么該曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某四棱錐的三視圖如圖所示,則最長(zhǎng)的一條側(cè)棱的長(zhǎng)度是( 。
A.$2\sqrt{5}$B.$4\sqrt{2}$C.$\sqrt{29}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若(sinθ+$\frac{1}{x}$)5的展開式中$\frac{1}{{x}^{3}}$的系數(shù)為2,則cos2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范圍[12,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t為參數(shù))與曲線$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ為參數(shù))的公共點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為S=1320,則判斷框內(nèi)應(yīng)填入的內(nèi)容是( 。
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是“二分法”求方程近似解的流程圖,在①,②處應(yīng)填寫的內(nèi)容分別是( 。
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

同步練習(xí)冊(cè)答案