【題目】下列命題中的假命題是(  )

A. αβR,使sin(αβ)sinαsinβ

B. φR,函數(shù)f(x)sin(2xφ)都不是偶函數(shù)

C. x0R,使 (a,b,cR且為常數(shù))

D. a>0,函數(shù)f(x)ln2xlnxa有零點

【答案】B

【解析】α0時,sin(αβ)sinαsinβ,A正確;

時,函數(shù)是偶函數(shù),B錯誤;

對于三次函數(shù)f(x)x3ax2bxc,當x時,y,當x時,y,又f(x)R上為連續(xù)函數(shù),故x0R,使,C正確;

f(x)0ln2xlnxa0,則有,所以a>0,函數(shù)f(x)ln2xlnxa0有零點,D正確.

本題選擇B選項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

平面直角坐標系xOy中,射線lyx(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點為極點,x軸的非負半軸為極軸建立極坐標系. 曲線C3的極坐標方程為ρ=8sin θ.

(Ⅰ)寫出射線l的極坐標方程以及曲線C1的普通方程;

(Ⅱ)已知射線lC2交于O,M,與C3交于ON,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若對任意的實數(shù)x,f(x)-|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)f(x)的最小值;

(2)已知m∈R,p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立,q:函數(shù)y=(m2-1)x是增函數(shù),若p正確,q錯誤,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856266)[選修4-5:不等式選講]

設(shè)函數(shù)f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線.

(1)求曲線在點P(2,4)處的切線方程;

(2)求曲線過點P(2,4)的切線方程;

(3)求斜率為1的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856290)[選修4-5:不等式選講]

已知函數(shù)f(x)=|xa|+|x-2a|.

(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實數(shù)a的取值范圍;

(Ⅱ)當a=-1時,解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856301)已知函數(shù)f(x)=m(x-1)exx2(m∈R),其導函數(shù)為f′(x),若對任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實數(shù)m的取值范圍為(  )

A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)

查看答案和解析>>

同步練習冊答案