【題目】[選修4-4:坐標系與參數(shù)方程]
平面直角坐標系xOy中,射線l:y=x(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點為極點,x軸的非負半軸為極軸建立極坐標系. 曲線C3的極坐標方程為ρ=8sin θ.
(Ⅰ)寫出射線l的極坐標方程以及曲線C1的普通方程;
(Ⅱ)已知射線l與C2交于O,M,與C3交于O,N,求|MN|的值.
科目:高中數(shù)學 來源: 題型:
【題目】設滿足以下兩個條件的有窮數(shù)列, , , 為階“期待數(shù)列”:
①;
②.
()分別寫出一個單調遞增的階和階“期待數(shù)列”.
()若某階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
()記階“期待數(shù)列”的前項和為,試證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一張紙的長、寬分別為2a,2a,A,B,C,D分別是其四條邊的中點,現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點重合為一點P,從而得到一個多面體,關于該多面體的下列命題,正確的是________(寫出所有正確命題的序號).
①該多面體是三棱錐;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④該多面體外接球的表面積為5πa2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ex(ln x-a)(e是自然對數(shù)的底數(shù),
e=2.71 828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a,b的值.
(2)若函數(shù)f(x)在區(qū)間上單調遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知△ABC中,角A,B,C所對的邊分別為a,b,c,且3a2+ab-2b2=0.
(Ⅰ)若B=,求sinC的值;
(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)點B坐標為(0, ),問是否存在過點B的直線l交橢圓C于M,N兩點,且滿足 (O為坐標原點)?若存在,求出此時直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在公比為q的等比數(shù)列{an}中,已知a1=16,且a1,a2+2,a3成等差數(shù)列.
(Ⅰ)求q,an;
(Ⅱ)若q<1,求滿足a1-a2+a3-…+(-1)2n-1a2n>10的最小的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中的假命題是( )
A. α,β∈R,使sin(α+β)=sinα+sinβ
B. φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
C. x0∈R,使 (a,b,c∈R且為常數(shù))
D. a>0,函數(shù)f(x)=ln2x+lnx-a有零點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com