附加題:設(shè)f(x)為定義在實(shí)數(shù)集R上的單調(diào)函數(shù),試解方程:f(x+y)=f(x)•f(y).
【答案】分析:因?yàn)樵O(shè)f(x)為定義在實(shí)數(shù)集R上的單調(diào)函數(shù),f(x+y)=f(x)•f(y).所以f(x)=ax(a>1或0<a<1)
解答:解:因?yàn)樵O(shè)f(x)為定義在實(shí)數(shù)集R上的單調(diào)函數(shù),
f(x+y)=f(x)•f(y).
所以f(x)=ax(a>1或0<a<1)
點(diǎn)評(píng):解決其他不等式一般通過(guò)同解變形轉(zhuǎn)化為已知不等式來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22、附加題:設(shè)f(x)為定義在實(shí)數(shù)集R上的單調(diào)函數(shù),試解方程:f(x+y)=f(x)•f(y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)附加題:設(shè)函數(shù)f(x)=
1
4
x2+
1
2
x-
3
4
,對(duì)于正整數(shù)列{an},其前n項(xiàng)和為Sn,且Sn=f(an),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等比數(shù)列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•揚(yáng)州三模)理科附加題:
已知(1+
12
x)n
展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設(shè)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對(duì)任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

附加題:設(shè)f(x)為定義在實(shí)數(shù)集R上的單調(diào)函數(shù),試解方程:f(x+y)=f(x)•f(y).

查看答案和解析>>

同步練習(xí)冊(cè)答案