16.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示:
(1)試確定f(x)的解析式;
(2)f($\frac{α}{2π}$)=$\frac{1}{2}$,求cos($\frac{2π}{3}$+$\frac{α}{2}$)的值.

分析 (1)根據(jù)f(x)的部分圖象,求出A、T、ω和φ的值,即可寫出f(x)的解析式;
(2)根據(jù)f($\frac{α}{2π}$)的值,利用誘導(dǎo)公式化簡cos($\frac{2π}{3}$+$\frac{α}{2}$),求值即可.

解答 解:(1)由圖可知 A=2,
且$\frac{5}{6}-\frac{1}{3}=\frac{1}{2}=\frac{T}{4}$,
∴T=2,
又${T}=\frac{2π}{ω}=2$,
∴ω=π;
將$({\frac{5}{6},0})$代入f(x)=2sin(πx+φ),
即  $sin({\frac{5}{6}π+φ})=0$,
∴$\frac{5}{6}π+φ=kπ$,
解得$φ=kπ-\frac{5}{6}π$,k∈Z;
又∵$|φ|<\frac{π}{2}$,
∴$φ=\frac{π}{6}$,
∴$f(x)=2sin({πx+\frac{π}{6}})({x∈R})$;
(2)∵$f({\frac{α}{2π}})=\frac{1}{2}$,
∴$sin({\frac{α}{2}+\frac{π}{6}})=\frac{1}{4}$,
∴$cos({\frac{2π}{3}+\frac{α}{2}})=cos({\frac{π}{2}+\frac{α}{2}+\frac{π}{6}})=-sin({\frac{α}{2}+\frac{π}{6}})$=$-\frac{1}{4}$.

點(diǎn)評 本題考查了三角函數(shù)化簡以及三角函數(shù)圖象與性質(zhì)的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.能夠使sinx≥0和cotx≥0同時(shí)成立的x的集合是(  )
A.{x|0<x≤$\frac{π}{2}$}B.{x|2kπ≤x≤2kπ+$\frac{π}{2}$,k∈Z}
C.{x|2kπ<x≤2kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x≤kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在數(shù)學(xué)考試中,小明的成績在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.計(jì)算:
(1)小明在數(shù)學(xué)考試中取得80分以上成績的概率;
(2)小明考試及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列向量$\overrightarrow a$與$\overrightarrow b$共線(其中向量$\overrightarrow{e_1}與\overrightarrow{e_2}$不共線)的是(  )
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+2xcosθ-1,x∈[-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}]$
(1)當(dāng)θ=$\frac{π}{3}$時(shí),求f(x)的最值;
(2)若f(x)在$x∈[-\frac{{\sqrt{3}}}{2},\frac{1}{2}]$上是單調(diào)函數(shù),且θ∈[0,2π],求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.sin(-375°)=( 。
A.$\frac{\sqrt{3}-\sqrt{2}}{2}$B.-$\frac{\sqrt{6}-\sqrt{2}}{4}$C.-$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若數(shù)列{an}的通項(xiàng)公式是an=(-1)n(3n-1),前n項(xiàng)和為Sn,則S11等于( 。
A.-187B.-2C.-32D.-17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=x3+log2x,$則\lim_{t→0}\frac{f(1+t)-f(1)}{t}$=3+$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對于實(shí)數(shù)a,b,c,有下列命題:①若a>b,則ac<bc;②若ac2>bc2,則a>b;③若a<b<0,則a2>ab>b2;④若c>a>b>0,則$\frac{a}{c-a}>\frac{c-b}$;⑤若a>b,$\frac{1}{a}>\frac{1}$,則a>0,b>0其中真命題為(填寫序號)②③④.

查看答案和解析>>

同步練習(xí)冊答案