7.用g(n)表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,則g(9)=9,;10的因數(shù)有1,2,5,10,g(10)=5;那么g(1)+g(2)+g(3)+…+g(22016-1)=$\frac{4}{3}$×42015-$\frac{1}{3}$.

分析 據(jù)題中對(duì)g(n)的定義,判斷出g(n)=g(2n),且若n為奇數(shù)則g(n)=n,利用等差數(shù)列的前n項(xiàng)和公式及逐差累加的方法及等比數(shù)列的前n項(xiàng)和公式求出g(1)+g(2)+g(3)+…+g(22016-1).

解答 解:由g(n)的定義知g(n)=g(2n),且若n為奇數(shù)則g(n)=n
令f(2016)=g(1)+g(2)+g(3)+…g(22016-1)
則f(2017)=g(1)+g(2)+g(3)+…g(22017-1)
=1+3+…+(22017-1)+g(2)+g(4)+…+g(22017-2)
=22016[1+(22017-1)]×$\frac{1}{2}$+g(1)+g(2)+…+g(22017-2)=42016+f(2016)
即f(2017)-f(2016)=42016,
分別取n為1,2,…,n并累加得f(2017)-f(1)=4+42+…+42016=$\frac{4×(1-{4}^{2016})}{1-4}$=$\frac{4}{3}$(42016-1),
又f(1)=g(1)=1,所以f(2017)=$\frac{4}{3}$(42016-1)+1
所以f(2016)=g(1)+g(2)+g(3)+…g(22016-1)=$\frac{4}{3}$(42015-1)+1=$\frac{4}{3}$×42015-$\frac{1}{3}$.
故答案為$\frac{4}{3}$×42015-$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的前n項(xiàng)和公式、等比數(shù)列的前n項(xiàng)和公式、逐差累加的方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若拋物線y2=3x上的一點(diǎn)M到原點(diǎn)距離為2,則點(diǎn)M到該拋物線焦點(diǎn)的距離為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,A、B、C的對(duì)邊分別為a,b,c,a=$\sqrt{5}$,2sinA+$\sqrt{15}$sinB=2$\sqrt{5}$sinC,且△ABC的面積S△ABC=$\overrightarrow{BA}$•$\overrightarrow{BC}$,則b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,設(shè)Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則T4=98.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-3x+2<0},B={x|2x>4},則( 。
A.A⊆BB.B⊆AC.A∩∁RB=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=alnx+$\frac{2}{x}$(a∈R),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x+y≤1}\end{array}\right.$,則|3x+4y-7|的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知方程${x^2}+3\sqrt{3}x+4=0$有兩個(gè)實(shí)根x1,x2,記α=arctanx1,β=arctanx2,求α+β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案