【題目】已知函數(shù)

)當(dāng)時(shí),求函數(shù)的極值;

時(shí),討論的單調(diào)性;

)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.

【答案】)函數(shù)的極小值為,無極大值;()當(dāng)時(shí),函數(shù)的在定義域單調(diào)遞增;當(dāng)時(shí),在區(qū)間,單調(diào)遞減,在區(qū)間單調(diào)遞增;當(dāng)時(shí),在區(qū)間,單調(diào)遞減,在區(qū)間,上單調(diào)遞增.

【解析】

試題(1)函數(shù)的定義域?yàn)?/span>, 當(dāng)時(shí),函數(shù),利用導(dǎo)函數(shù)求出函數(shù)的單調(diào)性,即可求出函數(shù)的極值;

2)由,所以,

,得,,對(duì)、分類討論,求出的單調(diào)性;

3)若對(duì)任意的恒有成立,等價(jià)于當(dāng),對(duì)任意的,恒有成立,由()知,所以上式化為對(duì)任意的,恒有成立,即,因?yàn)?/span>,所以,所以

試題解析:(1)函數(shù)的定義域?yàn)?/span>,令,

;(舍去).

當(dāng)變化時(shí),的取值情況如下:







0




極小值


所以,函數(shù)的極小值為,無極大值.

2,令,得,

當(dāng)時(shí),,函數(shù)的在定義域單調(diào)遞減;

當(dāng)時(shí),在區(qū)間,,上,單調(diào)遞減,

在區(qū)間,上,單調(diào)遞增;

當(dāng)時(shí),在區(qū)間,,上,單調(diào)遞減,

在區(qū)間,上單調(diào)遞增.

3)由(2)知當(dāng)時(shí),函數(shù)在區(qū)間單調(diào)遞減;所以,當(dāng)時(shí),

問題等價(jià)于:對(duì)任意的,恒有成立,即,因?yàn)?/span>a<0,所以,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)得到成績(jī)與專業(yè)的列聯(lián)表:( )

優(yōu)秀

非優(yōu)秀

總計(jì)

14

6

20

7

13

20

總計(jì)

21

19

40

附:參考公式及數(shù)據(jù):

(1)統(tǒng)計(jì)量:,().

(2)獨(dú)立性檢驗(yàn)的臨界值表:

0.050

0.010

3.841

6.635

則下列說法正確的是

A. 的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

B. 的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)

C. 的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

D. 的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線a0,b0)的右焦點(diǎn)為F3,0),左、右頂點(diǎn)分別為M,N,點(diǎn)PE在第一象限上的任意一點(diǎn),且滿足kPMkPN8

1)求雙曲線E的方程;

2)若直線PN與雙曲線E的漸近線在第四象限的交點(diǎn)為A,且△PAF的面積不小于3,求直線PN的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.命題p,則¬pxR,x2+x+10

B.ABC中,AB“sinAsinB的既不充分也不必要條件

C.若命題pq為假命題,則p,q都是假命題

D.命題x23x+20,則x1”的逆否命題為x≠1,則x23x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A.p∨q為真命題,則p∧q為真命題

B.“x5”“x24x50”的充分不必要條件

C.命題x<1,則x22x3>0”的否定為:x≥1,則x22x3≤0”

D.已知命題px∈R,x2x1<0,則px∈R,x2x1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求不等式的解集;

2若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.

1)求橢圓的方程;

2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線軸交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn),已知橢圓的長(zhǎng)軸為是橢圓上一動(dòng)點(diǎn),的最大值為.

1)求橢圓的方程;

2)過點(diǎn)的直線交橢圓兩點(diǎn),為橢圓上一點(diǎn),為坐標(biāo)原點(diǎn),且滿足,其中,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案