有一張矩形紙片ABCD,AD=9,AB=12,將紙片折疊使A、C兩點重合,那么折痕長是
 
考點:與直線關于點、直線對稱的直線方程,兩點間的距離公式
專題:解三角形
分析:作圖,連AF,依題意,AF=FC,設AF=x,則BF=BC-FC=12-x,在直角三角形ABF中,易求x=
75
8
;在直角三角形AOF中,可解得FO=
45
8
,從而可得折痕長.
解答: 解:連AF,依題意,AF=FC,設AF=x,則BF=BC-FC=12-x,

在直角三角形ABF中,由勾股定理,得
AF2=AB2+BF2
即x2=(12-x)2+92,
解得x=
75
8
;
記AC、EF交點為O,則AC=
122+92
=15,AO=
15
2
;
在直角三角形AOF中,由勾股定理得:AF2=FO2+AO2,即(
75
8
)2
=FO2+(
15
2
)2
,
解得FO=
45
8
,
所以EF=2FO=
45
4
,
故答案為:
45
4
點評:本題考查與直線關于直線對稱的問題,著重考查解直角三角形,考查作圖與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
1
x
-
1
y
=3,則代數(shù)式
2x-14xy-2y
x-2xy-y
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
b
=(0,-1).若(
a
b
)⊥
a
,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC是一個邊長為3的正三角形,若在每一邊的兩個三等分點中,各隨機選取一點連成三角形.下列命題正確的是
 
.(寫出所有正確命題的編號)
①依此方法可能連成的三角形一共有8個;
②這些可能連成的三角形中,恰有2個是銳角三角形;
③這些可能連成的三角形中,恰有6個是直角三角形;
④這些可能連成的三角形中,恰有6個是鈍角三角形;
⑤這些可能連成的三角形中,恰有2個是正三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體的8個頂點中,有4個恰是正四面體的頂點,則正方體與正四面體的表面積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lg(-x),x<0
ex-1,x≥0
,若f(a)=1,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
m
-
y2
5
=1的右焦點與拋物線y2=12x的焦點相同,則此雙曲線的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x-y+1≥0
x+y-1≤0
y≥-3
,則z=3|x|+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點D,使△ABD為鈍角三角形的概率為
 

查看答案和解析>>

同步練習冊答案