如圖所示,△ABC是一個邊長為3的正三角形,若在每一邊的兩個三等分點中,各隨機選取一點連成三角形.下列命題正確的是
 
.(寫出所有正確命題的編號)
①依此方法可能連成的三角形一共有8個;
②這些可能連成的三角形中,恰有2個是銳角三角形;
③這些可能連成的三角形中,恰有6個是直角三角形;
④這些可能連成的三角形中,恰有6個是鈍角三角形;
⑤這些可能連成的三角形中,恰有2個是正三角形.
考點:命題的真假判斷與應(yīng)用,進行簡單的合情推理
專題:推理和證明
分析:由題意利用乘法原理,可得①正確;通過舉正例可得②③⑤不正確,④不正確,從而得出結(jié)論.
解答: 解:如圖:由題意利用乘法原理可得依此方法可能連成的三角形

一共有2×2×2=8個,故①正確.
其中,只有△EGM、△FHN為銳角三角形,故②正確.
其中,三角形△EGN,△ENH,△FGN,△FGM,△EMH,△FMH都是直角三角形,故③正確.
沒有鈍角三角形,故④錯誤.
△EGM、△FHN為正三角形,故⑤正確;
故答案為:①②③⑤.
點評:本題主要考查乘法原理,三角形的形狀判斷,合情推理,通過舉反例,來說明某個命題不正確,是一種簡單有效的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
a
x
,x≥1
-x+3a,x<1
是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
2
x2+blnx在區(qū)間[
2
,+∞)上是減函數(shù),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時滿足(1)M⊆{1,2,3,4,5,6,7,8,9};(2)若a∈M,則9-a∈M的非空集合M有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于正數(shù)x,規(guī)定f(x)=
x
1+x
,例如f(3)=
3
1+3
=
3
4
,f(
1
3
)=
1
3
1+
1
3
=
1
4
,計算f(
1
2014
)+f(
1
2013
)+f(
1
2012
)+…+f(
1
3
)+f(
1
2
)+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]為不超過x的最大整數(shù),如[-2.2]=-3,[2.5]=2.設(shè)集合A={(x,y)|x2+y2≤1},B={(x,y)|[x]2+[y]2≤1},C={(x,y)|[x2]+[y2]≤1},則A∪B∪C所表示的平面區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一張矩形紙片ABCD,AD=9,AB=12,將紙片折疊使A、C兩點重合,那么折痕長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x 的不等式(x-1)2>ax2的解集中的整數(shù)恰有2個,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角△ABC中,A=
π
6
,B=
π
3
,點P△ABC內(nèi),∠APC=
3
,∠BPC=
π
2
,設(shè)∠PCA=α,則tanα=
 

查看答案和解析>>

同步練習(xí)冊答案