設(shè)函數(shù).
(1)討論的奇偶性;
(2)當(dāng)時,求的單調(diào)區(qū)間;
(3)若對恒成立,求實數(shù)的取值范圍.
(1)當(dāng)a=0是偶函數(shù);當(dāng)a0時函數(shù)f(x)為非奇非偶函數(shù)
(2) 原函數(shù)的減區(qū)間為(-,),增區(qū)間為(,+);(3)
【解析】
試題分析:解:(1)i)當(dāng)a=0時:f(x)=x+
∵f(-x)="(-x)+" =x+=f(x)
函數(shù)f(x)為偶函數(shù)3分
ii)當(dāng)a0時:
∵f(1)=1+,f(-1)=1+
若f(1)=f(-1),則1+=1+從而a=0,舍去;
若f(1)=-f(-1),則+=-2從而a
f(1)±f(-1),函數(shù)f(x)為非奇非偶函數(shù)6分
(2)當(dāng)a=2時:
f(x)=x+=
原函數(shù)的減區(qū)間為(-,),增區(qū)間為(,+);10分
(3)∵x(-1,3)
f(x)<10可變?yōu)閤-10<a-x< 10-x
即
對(*):令g(x)= x+x-10,其對稱軸為
③
對②令
④
由③、④知: 16分
考點:函數(shù)性質(zhì)的綜合運用
點評:主要是考查了函數(shù)奇偶性和單調(diào)性以及函數(shù)的最值的運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山西省高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間和極值;
(2)已知和是函數(shù)的兩個不同的零點,求的值并證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com