【題目】已知函數(shù),函數(shù).
(1)討論函數(shù)的極值;
(2)已知函數(shù),若函數(shù)在上恰有三個零點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)對求導(dǎo),分和兩種情況,分別討論的正負性,可得到的單調(diào)性,進而可求得極值;
(2)易知有且僅有一個零點,且時,從而可知有兩個零點,結(jié)合(1)知不符合題意,時,討論的極值,并結(jié)合零點存在性定理可求出答案.
(1)的定義域為,,
當時,在恒成立,∴在單調(diào)遞減,故無極值,
當時,由得.
當時,,則單調(diào)遞減;當時,,則單調(diào)遞增,
∴在處取得極小值,,無極大值.
綜上,當時,無極值;當時,有極小值,無極大值.
(2)若是的零點,則必有或,∴的零點必為或的零點,
而有且僅有一個零點,且,時.
①當時,由(1)知在單調(diào)遞減,至多只有一個零點,此時至多只有兩個零點,不合題意,舍去;
②當時,由(1)知在單調(diào)遞減,在單調(diào)遞增,則.
i)當即時,至多只有一個零點,此時至多只有兩個零點,不合題意,舍去;
ii)當即時,,,
由零點存在性定理知使得.
令,,則在單調(diào)遞增,在單調(diào)遞減,
∴,∴,,
當時,,
∴,又,
∴由零點存在性定理知使得,
∴,;,;,,
∴當時,有三個零點,滿足題意.
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求的值;
(2)若為區(qū)間上的任意實數(shù),且對任意,總有成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種子公司對一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關(guān)系進行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗地每天的晝夜溫差和每塊實驗地里50顆種子的發(fā)芽數(shù),得到如下資料:
(1)從上述十組試驗數(shù)據(jù)來看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關(guān)關(guān)系?是否具有線性相關(guān)關(guān)系?
(2)若在一定溫度范圍內(nèi),晝夜溫差與發(fā)芽數(shù)近似滿足相關(guān)關(guān)系:(其中).取后五組數(shù)據(jù),利用最小二乘法求出線性回歸方程(精確到0.01);
(3)利用(2)的結(jié)論,若發(fā)芽數(shù)試驗值與預(yù)測值差的絕對值不超過3個就認為正常,否則認為不正常.從上述十組試驗中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國家為了更 好地服務(wù)于農(nóng)民、開展社會主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當?shù)卣疀Q 定動員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計,若動員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬元.
(1)在動員戶農(nóng)民從事蔬菜加工后,要使剩下戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求的取值范圍;
(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于戶從事蔬菜種植的所有農(nóng)民年總年收入,求的最大值.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項,則也是數(shù)列 中的一項,稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求和的值;
(2)已知有窮等差數(shù)列的項數(shù)是,所有項之和是,求證:數(shù)列是“兌換數(shù)列”,并用和表示它的“兌換系數(shù)”;
(3)對于一個不小于3項,且各項皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為,有兩條與圓形景觀相切且互相垂直的道路.最初規(guī)劃在拐角處圖中陰影部分只有一塊綠化地,后來有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規(guī)劃部門采納了此建議,決定在綠化地中增建一條與圓相切的小道問:兩點應(yīng)選在何處可使得小道最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一點.
(1)求證:平面EBD⊥平面SAC;
(2)設(shè)SA=4,AB=2,求點A到平面SBD的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點的直線與橢圓C交于P、Q兩點,且在直線上存在點M,使得為等邊三角形,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com