一個(gè)頂點(diǎn)的坐標(biāo),焦距的一半為3的橢圓的標(biāo)準(zhǔn)方程是(   )
A.B.C.D.
D

試題分析:焦距的一半為3 ,頂點(diǎn)的坐標(biāo)  ,結(jié)合圖形可知焦點(diǎn)在x軸上,所以橢圓方程為
點(diǎn)評(píng):橢圓中由頂點(diǎn)坐標(biāo)可得到的值,由焦點(diǎn)可得到值,滿足關(guān)系式,由寫橢圓方程時(shí)要注意焦點(diǎn)位置
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

準(zhǔn)線方程為x=1的拋物線的標(biāo)準(zhǔn)方程是(  。
A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點(diǎn)、,過點(diǎn)C的直線與橢圓交于另一點(diǎn)D,并與x軸交于點(diǎn)P,直線AC與直線BD交于點(diǎn)Q.

(I)當(dāng)直線過橢圓右焦點(diǎn)時(shí),求線段CD的長(zhǎng);
(II)當(dāng)點(diǎn)P異于點(diǎn)B時(shí),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,直線軸交于點(diǎn),過點(diǎn)且傾斜角為30°的直線交橢圓于兩點(diǎn).
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點(diǎn)在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個(gè)不重合的動(dòng)點(diǎn),以為直徑且過點(diǎn)的所有圓中,求面積最小的圓的半徑長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩焦點(diǎn)是橢圓上一點(diǎn)且的等差中項(xiàng),則此橢圓的標(biāo)準(zhǔn)方程為               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:的離心率為,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(。┊(dāng)過A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的動(dòng)點(diǎn),點(diǎn)為其準(zhǔn)線上的動(dòng)點(diǎn),當(dāng)為等邊三角形時(shí),其面積為
A.B.4C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N  (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過點(diǎn)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案