設橢圓的左焦點為,直線軸交于點,過點且傾斜角為30°的直線交橢圓于兩點.
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個不重合的動點,以為直徑且過點的所有圓中,求面積最小的圓的半徑長.
(1)
(2)(2)把直線與橢圓方程聯(lián)立,消去y,設出A,B的坐標,則可求得x1+x2=-3x1x2,進而分別表示出F1A和AF1B斜率,進而求得kF1A•kF1B的值
(3)

試題分析:解: (Ⅰ)可知直線              2分
,,解得,
所以,橢圓的方程為.             4分
(Ⅱ)聯(lián)立方程組  整理得:,
,則,
因為,所以


所以點在以線段為直徑的圓上.            10分
(3)面積最小的圓的半徑長應是點 到直線的距離.  11分
設為 即面積最小的圓的半徑長為   13分
點評:本題主要考查了直線與圓錐曲線的綜合問題.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:



4

1

2
4

2
(1)求的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,在拋物線上,且,弦的中點在其準線上的射影為,則的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,過拋物線焦點的直線依次交拋物線與圓于點A、B、C、D,則的值是________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,是橢圓上位于第一象限內(nèi)的一點,點也在橢圓上,且滿足是坐標原點),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點,已知點的坐標為(),點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓:的左右焦點,為直線上一點,是底角為30°的等腰三角形,則的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個頂點的坐標,焦距的一半為3的橢圓的標準方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于曲線,給出下面四個命題:
①曲線不可能表示橢圓;   ②當時,曲線表示橢圓;
③若曲線表示雙曲線,則;
④若曲線表示焦點在軸上的橢圓,則
其中所有正確命題的序號為__    _ __

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知分別是雙曲線的左、右焦點,若關于漸近線的對稱點恰落在以為圓心,為半徑的圓上,則的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案