拋物線的焦點為,在拋物線上,且,弦的中點在其準線上的射影為,則的最大值為

試題分析:,兩邊平方得

,最大值為
點評:利用拋物線的定義可將拋物線上的點到焦點的距離與到準線的距離互相轉(zhuǎn)化,求最值時借助于不等式,應用時注意其成立的條件:是正數(shù),和為定值積取最值,積為定值和取最值,當且僅當時等號成立
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(Ⅰ)化曲線的極坐標方程為直角坐標方程;
(Ⅱ)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的焦點為F,準線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設圓C與準線交于不同的兩點M,N.

(I)若點C的縱坐標為2,求;
(II)若,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

準線方程為x=1的拋物線的標準方程是(  。
A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的離心率為,則其漸近線方程為( )
A.y=±2xB.y=C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過拋物線上的動點作拋物線的兩條切線、, 切點為、.若、的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點,過點C的直線與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.

(I)當直線過橢圓右焦點時,求線段CD的長;
(II)當點P異于點B時,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左焦點為,直線軸交于點,過點且傾斜角為30°的直線交橢圓于兩點.
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個不重合的動點,以為直徑且過點的所有圓中,求面積最小的圓的半徑長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為,點為拋物線上的動點,點為其準線上的動點,當為等邊三角形時,其面積為
A.B.4C.6D.

查看答案和解析>>

同步練習冊答案