7.已知向量$\overrightarrow{a}$=(1,t),$\overrightarrow$=(-2,1)滿足(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則t=$\frac{9}{2}$.

分析 根據(jù)兩向量垂直,它們的數(shù)量積為0,列出方程求出t的值.

解答 解:向量$\overrightarrow{a}$=(1,t),$\overrightarrow$=(-2,1),且(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,
∴(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$=2$\overrightarrow{a}$•$\overrightarrow$-${\overrightarrow}^{2}$=0,
2×(-2+t)-5=0,
解得t=$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點評 本題考查了平面向量的數(shù)量積與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.f(x)是定義在非零實數(shù)集上的函數(shù),f′(x)為其導(dǎo)函數(shù),且x>0時,xf′(x)-f(x)<0,記a=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,b=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,c=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,則( 。
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=$\frac{{a•{2^x}+b}}{{{2^x}+1}}$是R上的奇函數(shù),且f(1)=$\frac{1}{3}$,
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“p∨q是真命題”是“¬p是假命題”的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f (x)=$\sqrt{lo{g}_{0.3}(4x-1)}$的定義域為A,m>0,函數(shù)g(x)=4 x-1(0<x≤m)的值域為B.
(1)當(dāng)m=1時,求 (∁R A)∩B;
(2)是否存在實數(shù)m,使得A=B?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-|2x+3|.
(I)解不等式f(x)>2;
(II)若關(guān)于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集為R,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正數(shù)a,b滿足ab=2a+b+2.
(Ⅰ)求ab的最小值;
(Ⅱ)求a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若f(x0)=$\frac{11}{20}$,x0∈[$\frac{π}{6}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓mx2+5y2=5m(m>0)的離心率為$e=\frac{{\sqrt{10}}}{5}$,求m的值,并求橢圓的長軸和短軸的長、焦點坐標(biāo)、頂點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案