設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求P點(diǎn)的縱坐標(biāo);
(Ⅱ)若
(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求a的取值范圍.
(Ⅰ);(Ⅱ);(Ⅲ)

試題分析:(Ⅰ)求點(diǎn)的縱坐標(biāo),由于點(diǎn)滿足,由向量加法的幾何意義可知,的中點(diǎn),則,而兩點(diǎn)在函數(shù)上,故,而,從而可得點(diǎn)的縱坐標(biāo);(Ⅱ)根據(jù),,可利用倒序相加法求和的方法,從而可求的的值;(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求的取值范圍,由(Ⅱ)可知,從而,可用拆項(xiàng)相消法求和,若對一切都成立,即,只需求出的最大值,從而得的取值范圍.
試題解析:(Ⅰ)∵,∴的中點(diǎn),則------(2分)
.∴,所以點(diǎn)的縱坐標(biāo)為.         (4分)
(Ⅱ)由(Ⅰ)知,,,,,
兩式相加得
 
;   (8分)
(Ⅲ) 
       10分

        12分
         14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù) ,當(dāng)時(shí)取得最小值-4.
(1)求函數(shù)的解析式;
(2)若等差數(shù)列前n項(xiàng)和為,且,,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式; 
(2)設(shè),數(shù)列的前項(xiàng)和為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列中,,且,則的值為   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,,記數(shù)列的前項(xiàng)和為,若恒成立,則正整數(shù)的最小值為(    )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,已知,則的值為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列的前項(xiàng)和為,則數(shù)列的前100項(xiàng)和為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列是等差數(shù)列,且,則(     )
A.2B.C.1D.

查看答案和解析>>

同步練習(xí)冊答案