已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
(Ⅰ)  ; ;(Ⅱ) .

試題分析:(Ⅰ)利用當(dāng)時,  求關(guān)系式,根據(jù)遞推公式從而得通項(xiàng)公式(注意驗(yàn)證首項(xiàng)),易得數(shù)列的通項(xiàng)公式;(Ⅱ)先分為奇數(shù)、偶數(shù)兩種情況化簡,再根據(jù)特征求.
試題解析:(Ⅰ)當(dāng),;  當(dāng)時, ,∴ ,  
是等比數(shù)列,公比為2,首項(xiàng), ∴ 
,得是等差數(shù)列,公差為2 ,又首項(xiàng),∴ .
(Ⅱ)   ,
.項(xiàng)和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求P點(diǎn)的縱坐標(biāo);
(Ⅱ)若;
(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列的前項(xiàng)和,給出如下兩個命題上:
命題是等差數(shù)列;命題:等式對任意)恒成立,其中是常數(shù)。
⑴若的充分條件,求的值;
⑵對于⑴中的,問是否為的必要條件,請說明理由;
⑶若為真命題,對于給定的正整數(shù))和正數(shù)M,數(shù)列滿足條件,試求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、是常數(shù).
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)若,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在等比數(shù)列中,,且的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為等差數(shù)列,為其前項(xiàng)和,已知( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等比數(shù)列的前項(xiàng)和為,且成等差數(shù)列。若,則             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,a6=11,則S7=(   )
A.91B.C.98D.49

查看答案和解析>>

同步練習(xí)冊答案