【題目】(本小題滿分12分)

某菜園要將一批蔬菜用汽車從所在城市甲運至亞運村乙,已知從城市甲到亞運村乙只有兩條公路,且運費由菜園承擔.

若菜園恰能在約定日期()將蔬菜送到,則亞運村銷售商一次性支付給菜園20萬元; 若在約定日期前送到,每提前一天銷售商將多支付給菜園1萬元; 若在約定日期后送到,每遲到一天銷售商將少支付給菜園1萬元.

為保證蔬菜新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送蔬菜,已知下表內(nèi)的信息:

統(tǒng)計信息
汽車行
駛路線

不堵車的情況下到達亞運村乙所需 時間 ()

堵車的情況下到達亞運村乙所需時間 ()

堵車的
概率

運費
(萬元)

公路1

2

3



公路2

1

4



(:毛利潤銷售商支付給菜園的費用運費)

(Ⅰ) 記汽車走公路1時菜園獲得的毛利潤為(單位:萬元),的分布列和數(shù)學期望;

(Ⅱ) 假設(shè)你是菜園的決策者,你選擇哪條公路運送蔬菜有可能讓菜園獲得的毛利潤更多?

【答案】1







萬元

2選擇公路2運送蔬菜有可能讓菜園獲得的毛利潤更多

【解析】試題分析:(1)首先計算得到汽車走公路1,不堵車時果園獲得的毛利潤萬元;堵車時果園獲得的毛利潤萬元;

根據(jù)公路1堵車的概率為,得到汽車走公路1時果園獲得的毛利潤的分布列,

進一步計算數(shù)學期望.

2)首先計算得到汽車走公路2時,不堵車時果園獲得的毛利潤萬元;

堵車時果園獲得的毛利潤萬元;根據(jù)公路2堵車的概率為,

即可得到汽車走公路2時果園獲得的毛利潤的分布列,進一步計算數(shù)學期望.

比較兩個數(shù)學期望,作出判斷.

試題解析:(1)汽車走公路1,不堵車時果園獲得的毛利潤萬元;

堵車時果園獲得的毛利潤萬元;

汽車走公路1時果園獲得的毛利潤的分布列為







4

萬元 5

2)設(shè)汽車走公路2時果園獲得的毛利潤為,

不堵車時果園獲得的毛利潤萬元;

堵車時果園獲得的毛利潤萬元;

汽車走公路2時果園獲得的毛利潤的分布列為







10

萬元 11

因為選擇公路2運送水果有可能讓果園獲得的毛利潤更多 12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取2人,這2人都“認為作業(yè)量大”的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“認為作業(yè)量大”與“性別”有關(guān)?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:(其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)單調(diào)遞增,函數(shù)的圖像關(guān)于點對稱,實數(shù)滿足不等式,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.

(Ⅰ)求的軌跡方程;

(Ⅱ)當不重合)時,求的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高一年級300名學生對歷史、地理學科的選課情況,對學生進行編號,用1,2,,300表示,并用表示第名學生的選課情況,其中根據(jù)如圖所示的程序框圖,下列說法錯誤的是( )

A. 為選擇歷史的學生人數(shù);

B. 為選擇地理的學生人數(shù);

C. 為至少選擇歷史、地理一門學科的學生人數(shù);

D. 為選擇歷史的學生人數(shù)與選擇地理的學生人數(shù)之和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平行四邊形OABC,頂點O,A,C分別表示0,32i,-24i,試求:

(1) 所表示的復(fù)數(shù);

(2)對角線所表示的復(fù)數(shù);

(3)B點對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》第八章方程問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600.問牛、羊、豬的價格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),且時,均有,,則滿足條件的可以是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用“神舟十號”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品甲(件)

產(chǎn)品乙(件)

研制成本與搭載費用之和(萬元/件)

200

300

計劃最大資金額3000

產(chǎn)品重量(千克/件)

10

5

最大搭載重量110千克

預(yù)計收益(萬元/件)

160

120

試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

查看答案和解析>>

同步練習冊答案