【題目】某傳染病疫情爆發(fā)期間,當(dāng)?shù)卣e極整合醫(yī)療資源,建立艙醫(yī)院對所有密切接觸者進(jìn)行14天的隔離觀察治療.治療期滿后若檢測指標(biāo)仍未達(dá)到合格標(biāo)準(zhǔn),則轉(zhuǎn)入指定?漆t(yī)院做進(jìn)一步的治療.艙醫(yī)院對所有人員在入口出口時(shí)都進(jìn)行了醫(yī)學(xué)指標(biāo)檢測,若入口檢測指標(biāo)在35以下者則不需進(jìn)入艙醫(yī)院而是直接進(jìn)入指定專科醫(yī)院進(jìn)行治療.以下是20名進(jìn)入艙醫(yī)院的密切接觸者的入口出口醫(yī)學(xué)檢測指標(biāo):

入口

50

35

35

40

55

90

80

60

60

60

65

35

60

90

35

40

55

50

65

50

出口

70

50

60

50

75

70

85

70

80

70

55

50

75

90

60

60

65

70

75

70

(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1

(Ⅱ)如果60艙醫(yī)院出口最低合格指標(biāo),那么,入口指標(biāo)低于多少時(shí),將來這些密切接觸者將不能進(jìn)入艙醫(yī)院而是直接進(jìn)入指定?漆t(yī)院接受治療.(檢測指標(biāo)為整數(shù))

附注:參考數(shù)據(jù):,

參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,

【答案】(Ⅰ).(Ⅱ)低于41

【解析】

(Ⅰ)結(jié)合表格中的數(shù)據(jù)的公式計(jì)算出回歸方程的系數(shù)即可得解;

(Ⅱ)把代入回歸方程,算出的值即可得解.

(Ⅰ)由表格中的數(shù)據(jù),可得,

所以,

,

所以關(guān)于的回歸方程為

(Ⅱ)當(dāng)時(shí),有,解得,

所以當(dāng)入口指標(biāo)低于41時(shí),將來這些密切接觸者將不能進(jìn)入艙醫(yī)院而是直接進(jìn)人指定?漆t(yī)院接受治療.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為

,

(1)求數(shù)列的通項(xiàng)公式.

(2)設(shè)數(shù)列滿足,

①求數(shù)列的通項(xiàng)公式;

②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).

1)當(dāng)時(shí),求過切點(diǎn)為的切線方程;

2)若在區(qū)間上的最大值為,求a的值;

3)若不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

1)求直線,的直角坐標(biāo)方程以及曲線的極坐標(biāo)方程;

2)若直線與曲線交于兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式.孿生素?cái)?shù)猜想是希爾伯特在二十世紀(jì)初提出的23個(gè)數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個(gè)素?cái)?shù),使得是素?cái)?shù),稱素?cái)?shù)對為孿生素?cái)?shù).在不超過15的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是正方形,梯形底面ABCD,且

(Ⅰ)證明:平面平面;

(Ⅱ)求直線AF與平面CDE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點(diǎn)處的切線方程;

2)當(dāng)時(shí),證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的包裝紙可類比如圖所示的平面圖形,其可看作是由正方形和等腰梯形拼成,已知,,在包裝的過程中,沿著將正方形折起,直至,得到多面體,分別為中點(diǎn).

1)證明:平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)員工500人參加學(xué)雷鋒志愿活動(dòng),按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

區(qū)間

人數(shù)

50

50

a

150

b

1)上表是年齡的頻數(shù)分布表,求正整數(shù)的值;

2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?

3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案