如圖,四邊形ABCD是正方形,E是AD上一點(diǎn),且AE=AD,N是AB的中點(diǎn),NF⊥CE于F,求證:FN2=EF·FC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE與圓相切,求線段CE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,作直線DN平行于中線AM,設(shè)這條直線交邊AB于點(diǎn)D,交邊CA的延長線于點(diǎn)E,交邊BC于點(diǎn)N.求證:AD∶AB=AE∶AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)在圓直徑的延長線上,切圓于點(diǎn),是的平分線交于點(diǎn),交于點(diǎn).
(1)求的度數(shù);(2)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5。
求:(1)⊙O的半徑;
(2)s1n∠BAP的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在正△ABC中,點(diǎn)D,E分別在邊AC,AB上,且AD=AC,AE=AB,BD,CE相交于點(diǎn)F.
(1)求證:A,E,F,D四點(diǎn)共圓;
(2)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在⊙O中,P是弦AB的中點(diǎn),過點(diǎn)P作半徑OA的垂線,垂足是點(diǎn)E.分別交⊙O于C、D兩點(diǎn).
求證:PC·PD=AE·AO.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com