如圖,已知點(diǎn)在圓直徑的延長(zhǎng)線上,切圓點(diǎn),的平分線交于點(diǎn),交點(diǎn).

(1)求的度數(shù);(2)若,求.

(1)45°(2)

解析試題分析:(1)由AC為圓O的切線,知∠B=∠EAC.
又DC是∠ACB的平分線,得到∠ACD=∠DCB.
進(jìn)一步有∠ADF=∠AFD;
由BE為圓O的直徑,得∠DAE=90°,得到∠ADF=.
(2)由已知可得,又,
得到,在中,=tan∠B=tan30°=.
試題解析:(1)∵AC為圓O的切線,∴∠B=∠EAC.
又知DC是∠ACB的平分線,

即∠ADF=∠AFD,又因?yàn)锽E為圓O的直徑,
.     5分

,又,

∴在中,.      10分
考點(diǎn):圓的幾何性質(zhì),三角形內(nèi)角平分線定理,相似三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知,在邊長(zhǎng)為1的正方形ABCD的一邊上取一點(diǎn)E,使AE=AD,從AB的中點(diǎn)F作HF⊥EC于H.

(1)求證:FH=FA;
(2)求EH∶HC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:是⊙的直徑,是弧的中點(diǎn),,垂足為于點(diǎn).

(1)求證:=;
(2)若=4,⊙的半徑為6,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD是正方形,E是AD上一點(diǎn),且AE=AD,N是AB的中點(diǎn),NF⊥CE于F,求證:FN2=EF·FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知相交于A、B兩點(diǎn),過(guò)A點(diǎn)作切線交于點(diǎn)E,連接EB并延長(zhǎng)交于點(diǎn)C,直線CA交于點(diǎn)D,

(1)當(dāng)點(diǎn)D與點(diǎn)A不重合時(shí)(如圖1),證明:ED2=EB·EC;
(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí)(如圖2),若BC=2,BE=6,求的直徑長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓的圓心的直角邊上,該圓與直角邊相切,與斜邊交于,.

(1)求的長(zhǎng);
(2)求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
 
(1)證明:DBDC;
(2)設(shè)圓的半徑為1,BC,延長(zhǎng)CEAB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,AD、CE是△ABC中邊BC、AB的高,AD和CE相交于點(diǎn)F.

求證:AF·FD=CF·FE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過(guò)C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點(diǎn)E,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案