【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗,總結(jié)出了一套有關(guān)體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)商功》:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”下圖解釋了這段話中由一個長方體,得到“塹堵”、“陽馬”、“鱉臑”的過程.已知如圖塹堵的棱長,則鱉臑的外接球的體積為_________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地貫徹黨的“五育并舉”的教育方針,某市要對全市中小學(xué)生“體能達(dá)標(biāo)”情況進(jìn)行了解,決定通過隨機抽樣選擇幾個樣本校對學(xué)生進(jìn)行體能達(dá)標(biāo)測試,并規(guī)定測試成績低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過其總?cè)藬?shù)的5%,則該樣本校體能達(dá)標(biāo)為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機抽取40名學(xué)生參加體能達(dá)標(biāo)測試,首先將這40名學(xué)生隨機分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測試后,兩組各自的成績統(tǒng)計如下:甲組的平均成績?yōu)?/span>70,方差為16,乙組的平均成績?yōu)?/span>80,方差為36.
(1)估計該樣本校學(xué)生體能測試的平均成績;
(2)求該樣本校40名學(xué)生測試成績的標(biāo)準(zhǔn)差s;
(3)假設(shè)該樣本校體能達(dá)標(biāo)測試成績服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差s作為的估計值,利用估計值估計該樣本校學(xué)生體能達(dá)標(biāo)測試是否合格?
(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機變量z服從正態(tài)分布,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進(jìn)行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為
7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù):
(Ⅱ)求取球次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點O為極點,x軸非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程及的普通方程;
(2)已知點PQ為曲線與曲線的交點,W為參數(shù)方程(為參數(shù))曲線上一點,求點W到直線的距離d的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體中,正方形和矩形互相垂直,,分別是和的中點,.
(Ⅰ)求證:平面.
(Ⅱ)在邊所在的直線上存在一點,使得平面,求的長;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合S,T,SN*,TN*,S,T中至少有兩個元素,且S,T滿足:
①對于任意x,yS,若x≠y,都有xyT
②對于任意x,yT,若x<y,則S;
下列命題正確的是( )
A.若S有4個元素,則S∪T有7個元素
B.若S有4個元素,則S∪T有6個元素
C.若S有3個元素,則S∪T有5個元素
D.若S有3個元素,則S∪T有4個元素
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com