【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標;
(Ⅱ)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
【答案】(I)+=1,T(1,); (Ⅱ)見解析.
【解析】
(I)由橢圓的離心率為得到 b2=a2,根據(jù)直線l:x+2y=4與橢圓有且只有一個交點T得到△=0,解得a2=4,b2=3,即得橢圓的方程. (Ⅱ)先計算出|PT|2=t2,|PA|==|﹣x1|,|PB|=|﹣x2|,再計算=為定值.
(I)由橢圓的離心率e===,則b2=a2,
則,消去x,整理得:y2﹣16y+16﹣a2=0,①
由△=0,解得:a2=4,b2=3,
所以橢圓的標準方程為:+=1;所以=,則T(1,),
(Ⅱ)設(shè)直線l′的方程為y=x+t,由,解得P的坐標為(1﹣,+),
所以|PT|2=t2,
設(shè)設(shè)A(x1,y1),B(x2,y2),聯(lián)立,消去y整理得x2+tx+﹣1=0,
則x1+x2=﹣t,x1x2=,△=t2﹣4(﹣1)>0,t2<12,
y1=x1+t,y2=x2+t,|PA|==|﹣x1|,
同理|PB|=|﹣x2|,
|PA||PB|=|(﹣x1)(﹣x2)|=|﹣(x1+x2)+x1x2|,
|﹣(﹣t)+|=t2,所以==,
所以=為定值.
科目:高中數(shù)學 來源: 題型:
【題目】2019年,泉州市區(qū)的房價依舊是市民關(guān)心的話題.總體來說,二手房房價有所下降;相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計泉州市某新房銷售人員2019年一年的工資情況的結(jié)果如圖所示,則下列說法正確的是( )
A.2019年該銷售人員月工資的中位數(shù)為
B.2019年該銷售人員8月份的工資增長率最高
C.2019年該銷售人員第一季度月工資的方差小于第二季度月工資的方差
D.2019年該銷售人員第一季度月工資的平均數(shù)大于第四季度月工資的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,正方形所在平面垂直于平面,是等腰直角三角形,,,.
(1)求證:平面;
(2)若為的中點,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一的極值點,求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,過點F,斜率為1的直線與拋物線C交于點A,B,且.
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點D、E,若直線DR,ER分別交直線于M,N兩點,求|MN|取最小值時直線DE的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下統(tǒng)計表和分布圖取自《清華大學2019年畢業(yè)生就業(yè)質(zhì)量報告》.
則下列選項錯誤的是( )
A.清華大學2019年畢業(yè)生中,大多數(shù)本科生選擇繼續(xù)深造,大多數(shù)碩士生選擇就業(yè)
B.清華大學2019年畢業(yè)生中,碩士生的就業(yè)率比本科生高
C.清華大學2019年簽三方就業(yè)的畢業(yè)生中,本科生的就業(yè)城市比碩士生的就業(yè)城市分散
D.清華大學2019年簽三方就業(yè)的畢業(yè)生中,留北京人數(shù)超過一半
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經(jīng)驗,總結(jié)出了一套有關(guān)體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數(shù)學名著《九章算術(shù)》中.《九章算術(shù)商功》:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”下圖解釋了這段話中由一個長方體,得到“塹堵”、“陽馬”、“鱉臑”的過程.已知如圖塹堵的棱長,則鱉臑的外接球的體積為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com