如圖中心在原點,焦點在軸上的橢圓,離心率,且經(jīng)過拋物線的焦點.
(I)求橢圓的標準方程;
(II)若過點B(2,0)的直線L(斜率不等于零)與橢圓交于不同的兩點E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線L的方程。
 
(1)(2)
(I)設橢圓的方程為,則①,
∵拋物線的焦點為(0, 1),  ……………………………………….2分
 ②
由①②解得.    …………………………………………………………5分
∴橢圓的標準方程為.    …………………………………………………6分
(II)如圖,由題意知的斜率存在且不為零,
方程為 ①,
將①代入,整理,得
,
…………………………………9分
,  則 ②
, 則,由此可得 ,,且.
由②知 ,.
, 即…………………………………12分
所求直線L的方程為:……………………………………………………………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知中心為坐標原點O,焦點在x軸上的橢圓的兩個短軸端點和左右焦點所組成的四邊形是面積為2的正方形,
(1)求橢圓的標準方程;
(2)過點P(0,2)的直線l與橢圓交于點A,B,當△OAB面積最大時,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左、右焦點,與直線相切的交橢圓于點恰好是直線的切點.
(1)求該橢圓的離心率;
(2)若點到橢圓的右準線的距離為,過橢圓的上頂點A的直線與交于B、C兩點,且,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,是橢圓上的任意一點,則的最大值是                              (     )
、9        、16            、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左右焦點,若在其右準線上存在點
使得線段的垂直平分線恰好經(jīng)過,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程+=1表示焦點在y軸上的橢圓,則m的取值范圍是       (   )
        
A.m<-1或1<m<B.1<m<2
C.m<-1或1<m<2D.m<2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在y軸上,離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線上的兩個動點,且滿足,過點A,B分別作拋物線的兩條切線,設兩切線的交點為M,試推斷是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,焦點在軸上的橢圓與軸的負半軸交于點,與軸的正半軸交于點,是左焦點且到直線的距離,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓上的一個動點,則的最大值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案