設(shè)分別是橢圓的左右焦點(diǎn),若在其右準(zhǔn)線上存在點(diǎn)
使得線段的垂直平分線恰好經(jīng)過,求的取值范圍
設(shè),,,則中點(diǎn)為,
的斜率為
所以的垂直平分線垂直平分線方程為
代入得,化簡(jiǎn)得
,解得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓為其左、右焦點(diǎn),A為右頂點(diǎn),l為左準(zhǔn)線,過的直線與橢圓相交于P,Q兩點(diǎn),且有

(1)求橢圓C的離心率e的最小值;
(2),求證:M,N兩點(diǎn)的縱坐標(biāo)之積是定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且經(jīng)過拋物線的焦點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)若過點(diǎn)B(2,0)的直線L(斜率不等于零)與橢圓交于不同的兩點(diǎn)E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線L的方程。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線過橢圓的左焦點(diǎn)和一個(gè)頂點(diǎn),該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓的左右焦點(diǎn),拋物線以為頂點(diǎn),為焦點(diǎn),設(shè)為橢圓與拋物線的一個(gè)交點(diǎn),橢圓離心率為,且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓上一點(diǎn)P到其左焦點(diǎn)的距離為3,到右焦點(diǎn)的距離為1,則P點(diǎn)到右準(zhǔn)線的距離為
A. 6B. 2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A.B是橢圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),定點(diǎn),向量在向量方向上的投影分別是m.n ,且7mn ,動(dòng)點(diǎn)P滿足
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)E的直線l與C交于兩個(gè)不同的點(diǎn)M.N,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


請(qǐng)閱讀以下材料,然后解決問題:
①設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,則橢圓的面積為ab
②我們把由半橢圓C1+="1" (x≤0)與半橢圓C2+="1" (x≥0)合成的曲線稱作“果圓”,其中=+,a>0,b>c>0
如右上圖,設(shè)點(diǎn)F0,F1F2是相應(yīng)橢圓的焦點(diǎn),A1,A2B1,B2是“果圓”與x,y軸的交點(diǎn),若△F0 F1 F2是邊長(zhǎng)為1的等邊三角形,則上述“果圓”的面積為                               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為,點(diǎn)在橢圓上,且
,則橢圓的離心率等于          

查看答案和解析>>

同步練習(xí)冊(cè)答案