【題目】已知,,,,,,邊上一點(diǎn),這里異于.由引邊的垂線是垂足,再由引邊的垂線是垂足,又由引邊的垂線是垂足.同樣的操作連續(xù)進(jìn)行,得到點(diǎn),,.設(shè),如圖所示.
(1)求的值;
(2)某同學(xué)對(duì)上述已知條件的研究發(fā)現(xiàn)如下結(jié)論:,問(wèn)該同學(xué)這個(gè)結(jié)論是否正確并說(shuō)明理由;
(3)用和表示.
【答案】(1)(2)結(jié)論正確,證明見(jiàn)解析;(3),.
【解析】
(1),根據(jù)向量數(shù)量積公式,求出,即可求解;
(2)只需在中,求出,判斷是否成立即可,在中,由余弦定理求出,根據(jù)已知得出,進(jìn)而求出,即可得到;
(3)由已知可得,,分別通過(guò),,,將用表示,結(jié)合,得到遞推關(guān)系,進(jìn)而求出的通項(xiàng)公式.
(1)∵,
∴.
∴.
(2)該同學(xué)的結(jié)論正確,證明如下:
由(1)及已知,得,,.
由余弦定理知.
又,則.
∴.
即.
(3)由已知.
∵,∴.
∴
.
即,也即.
∴,,
是以為首項(xiàng),公比為的等比數(shù)列,
,
∴,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是從2020年2月14日至2020年4月19日共66天的新冠肺炎中國(guó)/海外新增確診趨勢(shì)圖,根據(jù)該圖,下列結(jié)論中錯(cuò)誤的是( )
A.從2020年2月14日起中國(guó)已經(jīng)基本控制住國(guó)內(nèi)的新冠肺炎疫情
B.從2020年3月13日至2020年4月3日海外新冠肺炎疫情快速惡化
C.這66天海外每天新增新冠肺炎確診病例數(shù)的中位數(shù)在區(qū)間內(nèi)
D.海外新增新冠肺炎確診病例數(shù)最多的一天突破10萬(wàn)例
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(1)求取出的4個(gè)球均為黑球的概率.
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位6個(gè)員工借助互聯(lián)網(wǎng)開(kāi)展工作,每個(gè)員工上網(wǎng)的概率都是0.5(相互獨(dú)立).至少3人同時(shí)上網(wǎng)的概率為________;至少________人同時(shí)上網(wǎng)的概率小于0.3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩高射炮同時(shí)向一架敵機(jī)射擊,已知甲擊中敵機(jī)的概率是0.6,乙擊中敵機(jī)的概率為0.5,求敵機(jī)被擊中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線C的漸近線方程為,一個(gè)焦點(diǎn)為F(0,﹣8),則該雙曲線的標(biāo)準(zhǔn)方程為_____.已知點(diǎn)A(﹣6,0),若點(diǎn)P為C上一動(dòng)點(diǎn),且P點(diǎn)在x軸上方,當(dāng)點(diǎn)P的位置變化時(shí),△PAF的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣tx+t.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)t=2時(shí),方程f(x)=m﹣ax恰有兩個(gè)不相等的實(shí)數(shù)根x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某海岸P的附近有三個(gè)島嶼Q,R,S,計(jì)劃建立三座獨(dú)立大橋,將這四個(gè)地方連起來(lái),每座橋只連接兩個(gè)地方,且不出現(xiàn)立體交叉形式,則不同的連接方式有( ).
A.24種B.20種C.16種D.12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.曲線的極坐標(biāo)方程為,曲線與曲線的交線為直線.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)直線與軸交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com