【題目】若要得到函數(shù)y=sin(2x﹣ )的圖象,可以把函數(shù)y=sin2x的圖象(
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向左平移 個(gè)單位

【答案】A
【解析】解:由于函數(shù)y=sin(2x﹣ )=3sin2(x﹣ ),故要得到函數(shù)y=sin(2x﹣ )的圖象,將函數(shù)y=sin2x的圖象沿x軸向右平移 個(gè)單位即可,
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面,底面為菱形,交點(diǎn),已知,

(I)求證:平面

(II)在線段上是否存在一點(diǎn),使得平面,如果存在,求的值,如果不存在,請(qǐng)說明理由.

(III)設(shè)點(diǎn)內(nèi)(含邊界),且,求所有滿足條件的點(diǎn)構(gòu)成的圖形,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為公差不為的等差數(shù)列, 為前項(xiàng)和, 的等差中項(xiàng)為,且.令數(shù)列的前項(xiàng)和為

1)求;

2)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為 為橢圓的右焦點(diǎn), .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過且平行于的直線與直線交于點(diǎn).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是首項(xiàng)為19,公差為-2的等差數(shù)列,的前項(xiàng)和

1求通項(xiàng);

2設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=asin( )﹣2α+2(a>0),若存在x1 , x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是(
A.[ ]
B.(0, ]
C.[ ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.

(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,其前項(xiàng)和為 是等比數(shù)列,且, ,

(1)求數(shù)列的通項(xiàng)公式;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)是圓上異于、的點(diǎn),直線度平面, 、分別是、的中點(diǎn).

(Ⅰ)設(shè)平面與平面的交線為,求直線與平面所成角的余弦值;

(Ⅱ)設(shè)(Ⅰ)中的直線與圓的另一個(gè)交點(diǎn)為點(diǎn),且滿足, ,當(dāng)二面角的余弦值為時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案