3.函數(shù)f(x)=log2x-$\frac{1}{x-1}$的零點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 函數(shù)f(x)=log2x-$\frac{1}{x-1}$的零點(diǎn)個(gè)數(shù)?y=log2x與y=$\frac{1}{x-1}$的圖象有兩個(gè)交點(diǎn)個(gè)數(shù).畫(huà)出圖象即可.

解答 解:如圖所示,可知y=log2x與y=$\frac{1}{x-1}$的圖象有兩個(gè)交點(diǎn).

函數(shù)f(x)=log2x-$\frac{1}{x-1}$的零點(diǎn)個(gè)數(shù)是2
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn),及函數(shù)與方程的思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四個(gè)不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則x1+x2+$\frac{1}{{x}_{3}{x}_{4}}$的值為(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,1),$\overrightarrow{c}$=(-1,1).
(Ⅰ)λ為何值時(shí),$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直?
(Ⅱ)若(m$\overrightarrow{a}$+n$\overrightarrow$)∥$\overrightarrow{c}$,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=3cos(x+φ)-1的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,其中φ∈[0,π],則φ的值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=sinx(2$\sqrt{3}$cosx-sinx)+1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義行列式運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若將函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{1}&{\sqrt{3}}\end{array}|$的圖象向右平移φ(φ>0)個(gè)單位后,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=log2$\frac{x+a}{x-1}$(a>0)為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ)請(qǐng)寫(xiě)出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,若$|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=4$,∠BAC=30°,則$\overrightarrow{AB}•\overrightarrow{AC}$=6$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案