.已知點是曲線上的點,則(       )
A.B.C.D.
C
點P在以橢圓的四個頂點組成的菱形的邊上,是橢圓的焦點。點P在橢圓上或在橢圓內(nèi),所以.故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線上的兩點A、B到焦點的距離和是5,則線段AB的中點到軸的距離為(   )
A.1             B.2            C.3             D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設(shè)兩直線的斜率分別為,,且,證明:直線過定點().

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(0,),離心率為,直線l經(jīng)過橢圓C的右焦點F橢圓于A、B兩點,點A、FB在直線x=4上的射影依次為點D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線ly軸于點M,且,當直線l的傾斜角變化時,探求 的值是否為定值?若是,求出的值,否則,說明理由;
(Ⅲ)連接AE、BD,試探索當直線l的傾斜角變化時,直線AEBD是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本題滿分15分)長為3的線段的兩個端點分別在軸上移動,點在直線上且滿足.(I)求點的軌跡的方程;(II)記點軌跡為曲線,過點任作直線交曲線兩點,過作斜率為的直線交曲線于另一點.求證:直線與直線的交點為定點(為坐標原點),并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=4x2的焦點坐標是(   )
A.(1,0)B.(0,1)C.(,0)D.(0,)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與曲線 的公共點的個數(shù)為(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點,為平面內(nèi)一動點,且滿足那么點的軌跡方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為2,則的最小值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案