已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過(guò)定點(diǎn)().
(Ⅰ)由已知可得,
所求橢圓方程為.          ……4分
(Ⅱ)若直線的斜率存在,設(shè)方程為,依題意
設(shè),
 得 . ……6分
. 由已知,
所以,即. ……8分
所以,整理得
故直線的方程為,即
所以直線過(guò)定點(diǎn)().       ………10分
若直線的斜率不存在,設(shè)方程為
設(shè),,由已知
.此時(shí)方程為,顯然過(guò)點(diǎn)().
綜上,直線過(guò)定點(diǎn)().
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
在平面直角坐標(biāo)系中,已知,若實(shí)數(shù)使得為坐標(biāo)原點(diǎn))
(1)求點(diǎn)的軌跡方程,并討論點(diǎn)的軌跡類型;
(2)當(dāng)時(shí),若過(guò)點(diǎn)的直線與(1)中點(diǎn)的軌跡交于不同的兩點(diǎn)之間),試求面積之比的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系下,下列曲線中,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線x-y-1=0與實(shí)軸在y軸上的雙曲線x2-y2="m" (m≠0)的交點(diǎn)在以原點(diǎn)為中心,邊長(zhǎng)為2且各邊分別平行于坐標(biāo)軸的正方形內(nèi)部,則m的取值范圍是(   )
A.0<m<1   B.m<0C.-1<m<0D.m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)F1(– 3,0)和F2(3,0),動(dòng)點(diǎn)P到F1、F­2的距離之差為4,則點(diǎn)P的軌跡方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.已知點(diǎn)是曲線上的點(diǎn),則(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)設(shè)A(x1,y1)、B(x2,y2)是函數(shù)的圖象上任兩點(diǎn),且,已知點(diǎn)M橫坐標(biāo)為,
(1)求點(diǎn)M的縱坐標(biāo);
(2)若,求Sn
(3)已知為數(shù)列{an}的前n項(xiàng)和, 若對(duì)一切都成立,求取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列三個(gè)命題:①若直線過(guò)拋物線的焦點(diǎn),且與這條拋物線交于兩點(diǎn),則的最小值為;②雙曲線的離心率為;③若,則這兩圓恰有條公切線.④若直線與直線互相垂直,則
其中正確命題的序號(hào)是          .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列命題:
,使得;    ②曲線表示雙曲線;
的遞減區(qū)間為 ④對(duì),使得其中真命題為       (填上序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案