【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AD=2.
(1)求該四棱錐P-ABCD的表面積和體積;
(2)求該四棱錐P-ABCD內切球的表面積.
【答案】(1) S=8+4,,V= (2) (24-16)π.
【解析】
(1) 四個側面都是直角三角形,進而求出邊長,即可求得側面積,底面是正方形,二者相加即可求出表面積,PD⊥平面ABCD,故四棱錐的高為,再由棱錐的體積公式求出體積;
(2) 設內切球的半徑為r,球心為O,根據(jù)等體積法求出內切球的半徑,則由即可求得半徑,進而求出內切球的表面積.
(1) 解:(1)由已知底面ABCD為正方形,PD⊥平面ABCD,
,得PD⊥AD,PD⊥AB,AD⊥AB.
又,∴AB⊥平面PAD,∴PA⊥AB,∴PAPB
∴
同理
∴
.
S=8+4,,V=
(2)設內切球的半徑為r,球心為O,
則球心O到平面PAB,平面PAD,平面PCB,平面PCD,平面ABCD的距離均為r,
由可得
∴
∴.
∴r
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,,又數(shù)列滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若數(shù)列是單調遞增數(shù)列,求實數(shù)的取值范圍;
(3)若數(shù)列的各項皆為正數(shù),,設是數(shù)列的前項和,問:是否存在整數(shù),使得數(shù)列是單調遞減數(shù)列?若存在,求出整數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知橢圓:的離心率是,斜率不為0的直線:與相交于、兩點,與軸相交于點.
(1)若、分別是的左、右焦點,當經過且時,求的值;
(2)試探究,是否存在點,使得?若存在,請寫出滿足條件的、的關系式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】至年底,我國發(fā)明專利申請量已經連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請量以及相關數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請量每年都在增加,請問這幾年中哪一年的增長率達到最高,最高是多少?
(2)建立關于的回歸直線方程(精確到),并預測我國發(fā)明專利申請量突破萬件的年份.
參考公式:回歸直線的斜率和截距的最小二乘法估計分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】峰谷電是目前在城市居民當中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調;22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調.為了進一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機抽取了50 戶住戶進行夏季用電情況調查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價的用戶 | ||
不使用峰谷電價的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認為 “用電量的高低”與“使用峰谷電價”有關?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水車在古代是進行灌溉引水的工具,是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為R的水車,一個水斗從點A(3,-3)出發(fā),沿圓周按逆時針方向勻速旋轉,且旋轉一周用時60秒.經過t秒后,水斗旋轉到P點,設P的坐標為(x,y),其縱坐標滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).則下列敘述錯誤的是( )
A.R=6,ω=,φ=-
B.當t∈[35,55]時,點P到x軸的距離的最大值為6
C.當t∈[10,25]時,函數(shù)y=f(t)單調遞減
D.當t=20時,|PA|=6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右焦點分別為,、,,點在橢圓上,為原點.
⑴若,,求橢圓的離心率;
⑵若橢圓的右頂點為,短軸長為2,且滿足為橢圓的離心率).
①求橢圓的方程;
②設直線:與橢圓相交于、兩點,若的面積為1,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com