【題目】如圖,已知直三棱柱中,,,的中點,上一點,且.

(Ⅰ)證明:平面;

(Ⅱ)求三棱錐的體積.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)連接,由三棱柱是直三棱柱,得⊥面,得到,又在直角三角形中,證得,利用線面垂直的判定定理,即可得到平面;

(Ⅱ)過,連接,交于點,過,交于點,利用線面垂直的判定定理,證得,得到,求得,利用體積公式,即可求解。

(Ⅰ)連接,在中,依題意為等腰三角形且,

由面積相等,解得,

由于三棱柱是直三棱柱,故⊥面,

那么.

在直角三角形中,因為,

所以,又由,所以,

又因,故為直角,即

又由,所以得,所以,

,

.

(Ⅱ)過,連接,交于點,過,交于點

因為,所以,

又因,所以,所以,

又由,所以,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進(jìn)行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:


產(chǎn)品A()

產(chǎn)品B()


研制成本與塔載
費用之和(萬元/)

20

30

計劃最大資
金額300萬元

產(chǎn)品重量(千克/)

10

5

最大搭載
重量110千克

預(yù)計收益(萬元/)

80

60


試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時,證明:.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長度單位,曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)曲線與直線交于兩點,且點的坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線為參數(shù)),以坐標(biāo)原點為極點,軸為極軸建立極坐標(biāo)系,曲線

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)求與直線平行,且被曲線截得的弦長為的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過動點P(1,t)作直線交橢圓CA,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過定點且與直線垂直的直線與軸、軸分別交于點,點滿足.

1)若以原點為圓心的圓有唯一公共點,求圓的軌跡方程;

2)求能覆蓋的最小圓的面積;

3)在(1)的條件下,點在直線上,圓上總存在兩個不同的點使得為坐標(biāo)原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Ex22pyp0)的焦點為F,點M是直線yx與拋物線E在第一象限內(nèi)的交點,且|MF|5

1)求拋物E的方程.

2)直線l與拋物線E相交于兩點AB,過點A,B分別作AA1x軸于A1,BB1x軸于B1,原點O到直線l的距離為1.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1ab0)經(jīng)過點(,1),F01)是C的一個焦點,過F點的動直線l交橢圓于AB兩點.

1)求橢圓C的方程

2)是否存在定點M(異于點F),對任意的動直線l都有kMA+kMB0,若存在求出點M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案