12.如圖所示,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD為⊙O的切線,過(guò)A作CD的垂線,垂足為D,交⊙O于F.
(1)求證:AC為∠DAB的角平分線;
(2)過(guò)C作AB的垂線,垂足為M,若⊙O的直徑為8,且OM:MB=3:1,求DF•AD的值.

分析 (1)連接OC,運(yùn)用圓的切線的性質(zhì)和兩直線平行的判定和性質(zhì),由內(nèi)角平分線的定義,即可得證;
(2)由AC⊥BC,CM為斜邊AB上的高,運(yùn)用直角三角形的射影定理,結(jié)合圓的切割線定理,即可得到所求值.

解答 解:(1)證明:連接OC,
CD為⊙O的切線,可得OC⊥CD,
又AD⊥CD,
可得OC∥AD,
所以∠CAD=∠ACO,
又OC=OA,所以∠CAO=∠ACO,
所以∠CAO=∠CAD
所以AC為∠DAB的角平分線.
(2)由題意⊙O的直徑為8,OM:MB=3:1,
可得OM=3,MB=1,
由AC⊥BC,CM為斜邊AB上的高,
可得CM2=AM•MB=7,
又AC=AC,∠CAO=∠CAD,
所以Rt△ACB≌Rt△ACD,
所以CD=CM,
又CD2=DF•DA,
而CD2=7.
所以DF•DA=7.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì)和直角三角形的射影定理、切割線定理的運(yùn)用,考查三角形全等和內(nèi)角平分線的定義,考查推理和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知在直角坐標(biāo)系xOy中,曲線C的方程是(x-2)2+(y-l)2=4,直線l經(jīng)過(guò)點(diǎn)P(3,$\sqrt{3}$),傾斜角為$\frac{π}{6}$,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)寫(xiě)出曲線C的極坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|OA|•|OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,∠BAC的平分線交BC于D,交△ABC的外接圓于E,延長(zhǎng)AC交△DCE的外接圓于F
(1)求證:BD=DF;
(2)若AD=3,AE=5,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.圓C,直線l的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}}$)=2$\sqrt{2}$.
(1)求圓C與直線l的直角坐標(biāo)方程,并求出直線l與圓C的交點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn)P為圓C的圓心,點(diǎn)Q為直線l被圓C截得的線段的中點(diǎn).已知直線PQ的參數(shù)方程為$\left\{\begin{array}{l}x={t^5}+m\\ y=\frac{4}{n}{t^5}-2\end{array}$(t為參數(shù),t∈R),求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在圓內(nèi)接四邊形ABCD中,AD為圓的直徑,對(duì)角線AC與BD交于點(diǎn)Q,AB,DC的延長(zhǎng)線交于點(diǎn)P,連接PQ并延長(zhǎng)交AD于點(diǎn)E,連接EB.
(1)求證:PE⊥AD;
(2)求證:BD平分∠EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,☉O1,☉O2交于兩點(diǎn)P,Q,直線AB過(guò)點(diǎn)P,與⊙O1,⊙O2分別交于點(diǎn)A,B,直線CD過(guò)點(diǎn)Q,與⊙O1,⊙O2分別交于點(diǎn)C,D.求證:AC∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)矩陣A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$的逆矩陣為A-1,矩陣B滿足AB=$[\begin{array}{l}{3}\\{1}\end{array}]$,求 A-1,B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C1:x2+y2-2x-4y+m=0.
(1)若曲線C1是一個(gè)圓,且點(diǎn)P(1,1)在圓C1外,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=4時(shí),曲線C1關(guān)于直線x+y=0對(duì)稱的曲線為C2.設(shè)P為平面上的點(diǎn),滿足:存在過(guò)P點(diǎn)的無(wú)窮多對(duì)互相垂直的直線L1,L2,它們分別與曲線C1和曲線C2相交,且直線L1被曲線C1截得的弦長(zhǎng)與直線L2被曲線C2截得的弦長(zhǎng)總相等.
(1)求所有滿足條件的點(diǎn)P的坐標(biāo);
(2)若直線L1被曲線C1截得的弦為MN,直線L2被曲線C2截得的弦為RS,設(shè)△PMR與△PNS的面積分別為S1與S2,試探究S1•S2是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線l1的傾斜角的余弦為-$\frac{1}{2}$,直線l2的傾斜角的正切值為$\frac{1}{\sqrt{3}}$,則l1與l2的關(guān)系是垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案