分析 (1)連接OC,運(yùn)用圓的切線的性質(zhì)和兩直線平行的判定和性質(zhì),由內(nèi)角平分線的定義,即可得證;
(2)由AC⊥BC,CM為斜邊AB上的高,運(yùn)用直角三角形的射影定理,結(jié)合圓的切割線定理,即可得到所求值.
解答 解:(1)證明:連接OC,
CD為⊙O的切線,可得OC⊥CD,
又AD⊥CD,
可得OC∥AD,
所以∠CAD=∠ACO,
又OC=OA,所以∠CAO=∠ACO,
所以∠CAO=∠CAD
所以AC為∠DAB的角平分線.
(2)由題意⊙O的直徑為8,OM:MB=3:1,
可得OM=3,MB=1,
由AC⊥BC,CM為斜邊AB上的高,
可得CM2=AM•MB=7,
又AC=AC,∠CAO=∠CAD,
所以Rt△ACB≌Rt△ACD,
所以CD=CM,
又CD2=DF•DA,
而CD2=7.
所以DF•DA=7.
點(diǎn)評(píng) 本題考查圓的切線的性質(zhì)和直角三角形的射影定理、切割線定理的運(yùn)用,考查三角形全等和內(nèi)角平分線的定義,考查推理和運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com