精英家教網 > 高中數學 > 題目詳情

【題目】已知甲同學每投籃一次,投進的概率均為.

(1)求甲同學投籃4次,恰有3次投進的概率;

(2)甲同學玩一個投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設甲同學在一次游戲中投籃的次數為,求的分布列.

【答案】(1);(2)分布列見解析.

【解析】

(1)由題意可知:甲同學投籃4次,投進的次數服從二項分布,根據二項分布的特點,可以求出甲同學投籃4次,恰有3次投進的概率;

2)根據題意可以求出的可能取值為,分別求出相應取值時概率的大小,然后列出分布列.

(1)由題意可知:甲同學投籃4次,投進的次數服從二項分布,所以甲同學投籃4次,恰有3次投進的概率為

2)由題意可知的可能取值為,

,

,

,

,所以的分布列為:

2

3

4

5

6

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列是等差數列,是等比數列,.

(1)求的通項公式;

(2)若,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,過拋物線上一點作拋物線的切線,軸于點.

(1)判斷的形狀;

(2) 若兩點在拋物線上,點滿足,若拋物線上存在異于的點,使得經過三點的圓與拋物線在點處的有相同的切線,求點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表是20個國家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.

國家和地區(qū)

排放總量/千噸

人均排放量/

國家和地區(qū)

排放總量/千噸

人均排放量/

A

10330000

7.4

K

480000

2.0

B

5300000

16.6

L

480000

7.5

C

3740000

7.3

M

470000

3.9

D

2070000

1.7

N

410000

5.3

E

1800000

12.6

O

390000

16.9

F

1360000

10.7

P

390000

6.4

G

840000

10.2

Q

370000

5.7

H

630000

12.7

R

330000

6.2

I

550000

15.7

S

320000

6.2

J

510000

2.6

T

490000

16.6

1)這20個國家和地區(qū)人均二氧化碳排放量的中位數是多少?

2)針對這20個國家和地區(qū),請你找出二氧化碳排放總量較少的前15%的國家和地區(qū).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】淄博七中、臨淄中學為了加強交流,增進友誼,兩校準備舉行一場足球賽,由淄博七中版畫社的同學設計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.如何設計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(Ⅰ)當時,求的圖象在處的切線方程;

(Ⅱ)若函數有兩個不同零點, ,且,求證: ,其中的導函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1) 討論的單調性;

(2) ,當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點M(0,-1),直線l經過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產一種汽車的元件,該元件是經過、、三道工序加工而成的,、、三道工序加工的元件合格率分別為、、.已知每道工序的加工都相互獨立,三道工序加工都合格的元件為一等品;恰有兩道工序加工合格的元件為二等品;其它的為廢品,不進入市場.

(Ⅰ)生產一個元件,求該元件為二等品的概率;

(Ⅱ)若從該工廠生產的這種元件中任意取出3個元件進行檢測,求至少有2個元件是一等品的概率.

查看答案和解析>>

同步練習冊答案