【題目】已知拋物線的焦點為,過拋物線上一點作拋物線的切線,交軸于點.
(1)判斷的形狀;
(2) 若兩點在拋物線上,點滿足,若拋物線上存在異于的點,使得經過三點的圓與拋物線在點處的有相同的切線,求點的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月3日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關鍵技術問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設地球質量為M1,月球質量為M2,地月距離為R,點到月球的距離為r,根據牛頓運動定律和萬有引力定律,r滿足方程:
.
設,由于的值很小,因此在近似計算中,則r的近似值為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在處的切線與直線平行,求實數(shù)的值;
(2)試討論函數(shù)在區(qū)間上最大值;
(3)若時,函數(shù)恰有兩個零點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知公比為整數(shù)的正項等比數(shù)列滿足: , .
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四種說法正確的是( )
①若和都是定義在上的函數(shù),則“與同是奇函數(shù)”是“是偶函數(shù)”的充要條件
②命題 “”的否定是“ ≤0”
③命題“若x=2,則”的逆命題是“若,則x=2”
④命題:在中,若,則;
命題:在第一象限是增函數(shù);
則為真命題
A. ①②③④ B. ①③ C. ③④ D. ③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓于,兩點,且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點,兩點,直線過且與橢圓交于,兩點.求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經濟些?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲同學每投籃一次,投進的概率均為.
(1)求甲同學投籃4次,恰有3次投進的概率;
(2)甲同學玩一個投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設甲同學在一次游戲中投籃的次數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】宋元時期杰出的數(shù)學家朱世杰在其數(shù)學巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數(shù),等價于層數(shù))幾何?”中探討了“垛積術”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數(shù)),則本問題中三角垛底層菱草總束數(shù)為__________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com