已知△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率之積為-數(shù)學(xué)公式,求頂點(diǎn)C的軌跡方程.

解:設(shè)C(x,y),則 KAC=,(x≠±5).
由 KAC•KBC==-,
化簡(jiǎn)可得 ,
所以動(dòng)點(diǎn)C的軌跡方程為 ,(x≠±5).
分析:因?yàn)橹本AC、BC的斜率存在,所以先求出直線AC、BC的斜率,再根據(jù)斜率之積為-,即可得到動(dòng)點(diǎn)C的軌跡方程.
點(diǎn)評(píng):本題考查求點(diǎn)的軌跡方程的方法,斜率公式,注意x≠±5,此處是易錯(cuò)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率之積為-
12
,求頂點(diǎn)C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC的兩個(gè)頂點(diǎn)A(-10,2),B(6,4),垂心是H(5,2),求頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A、B分別是橢圓
x2
25
+
y2
9
=1 的左、右焦點(diǎn),三個(gè)內(nèi)角A、B、C滿足sinA-sinB=
1
2
sinC,則頂點(diǎn)C的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A(3,7),B(-2,5),若AC、BC的中點(diǎn)都在坐標(biāo)軸上,則C點(diǎn)的坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(0,-1),(0,1),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點(diǎn)C的軌跡E的方程,并判斷軌跡E為何種圓錐曲線;
(2)當(dāng)m=-
12
時(shí),過(guò)點(diǎn)F(1,0)的直線l交曲線E于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為Q(M,Q不重合) 試問(wèn):直線MQ與x軸的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案