11.已知函數(shù)y=2x與函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱,則不等式f(-1-$\frac{2}{x}$)≤0的解集為( 。
A.(-2,-1]B.[-2,-1]C.(-∞,-1]∪[0,+∞)D.(-2,0)

分析 根據(jù)反函數(shù)的性質(zhì)可知f(x)=log2x,再利用對(duì)數(shù)函數(shù)的單調(diào)性解不等式.

解答 解:∵函數(shù)y=2x與函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱,
∴f(x)=log2x,
∴f(-1-$\frac{2}{x}$)≤0?log2(-1-$\frac{2}{x}$)≤0.
∴0<-1-$\frac{2}{x}$≤1.
∴-2≤$\frac{2}{x}<-1$.
解得-2<x≤-1.
故選:A.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),不等式的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集U=R,集合A={x|y=$\sqrt{{-x}^{2}-x}$,集合B={y|y=($\frac{1}{2}$)x,x∈A},則(∁UA)∩B等于(  )
A.[-1,0]B.(-1,0)C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知正方形ABCD的邊長(zhǎng)為2,E為線段CD(含端點(diǎn))上一動(dòng)點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{BD}$的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)f(x)=sin(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)于任意的n∈N*,都有Sn=2an-3n(n∈N*).
(1)求數(shù)列{an}的首項(xiàng)a1及數(shù)列的遞推關(guān)系式an+1=f(an);
(2)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值,并求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在三項(xiàng)as,ap,ar(s<p<r),它們組成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面四邊形ABCD中,∠A=∠B=60°,∠D=150°,BC=1,則四邊形ABCD面積的取值范圍是($\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判斷CD是否和平面PAD垂直;
(2)證明:面PAD⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知角α的終邊過(guò)點(diǎn)P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,則m的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=ex,對(duì)于實(shí)數(shù)m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),則p的最大值等于2ln2-ln3.

查看答案和解析>>

同步練習(xí)冊(cè)答案