分析 根據(jù)題意,建立平面直角坐標系,用坐標表示出$\overrightarrow{AE}$、$\overrightarrow{BD}$,計算$\overrightarrow{AE}•\overrightarrow{BD}$的值.
解答 解:建立平面直角坐標系,如圖所示,
正方形ABCD的邊長為3,E為CD的中點,
∴B(0,0),C(3,0),D(3,3),A(0,3);
則E(3,$\frac{3}{2}$),
∴$\overrightarrow{AE}$=(3,-$\frac{3}{2}$),
$\overrightarrow{BD}$=(3,3),
∴$\overrightarrow{AE}•\overrightarrow{BD}$=3×3-$\frac{3}{2}$×3=$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.
點評 本題考查了平面向量的數(shù)量積計算問題,是基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7\sqrt{5}}{5}$ | B. | $\frac{6\sqrt{5}}{5}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({0,\frac{{\sqrt{2}}}{2}}]$ | B. | $[{\frac{{\sqrt{2}}}{2},+∞})$ | C. | $({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com