A. | $({-\frac{1}{3}ln6,ln2}]$ | B. | $({-ln2,-\frac{1}{3}ln6})$ | C. | $({-ln2,-\frac{1}{3}ln6}]$ | D. | $({-\frac{1}{3}ln6,ln2})$ |
分析 判斷f(x)在(0,8)上的單調(diào)性,根據(jù)對(duì)稱性得出不等式在一個(gè)周期(0,8)內(nèi)有4個(gè)整數(shù)解,再根據(jù)對(duì)稱性得出不等式在(0,4)上有2個(gè)整數(shù)解,從而得出a的范圍.
解答 解:當(dāng)0<x≤4時(shí),f′(x)=$\frac{1-ln2x}{{x}^{2}}$,
令f′(x)=0得x=$\frac{e}{2}$,
∴f(x)在(0,$\frac{e}{2}$)上單調(diào)遞增,在($\frac{e}{2}$,4)上單調(diào)遞減,
∵f(x)是偶函數(shù),
∴f(x+4)=f(4-x)=f(x-4),
∴f(x)的周期為8,
作出f(x)一個(gè)周期內(nèi)的函數(shù)圖象如圖所示:
∵f(x)是偶函數(shù),且不等式f2(x)+af(x)>0在[-200,200]上有且只有200個(gè)整數(shù)解,
∴不等式在(0,200)內(nèi)有100個(gè)整數(shù)解,
∵f(x)在(0,200)內(nèi)有25個(gè)周期,
∴f(x)在一個(gè)周期(0,8)內(nèi)有4個(gè)整數(shù)解,
(1)若a>0,由f2(x)+af(x)>0,可得f(x)>0或f(x)<-a,
顯然f(x)>0在一個(gè)周期(0,8)內(nèi)有7個(gè)整數(shù)解,不符合題意;
(2)若a<0,由f2(x)+af(x)>0,可得f(x)<0或f(x)>-a,
顯然f(x)<0在區(qū)間(0,8)上無(wú)解,
∴f(x)>-a在(0,8)上有4個(gè)整數(shù)解,
∵f(x)在(0,8)上關(guān)于直線x=4對(duì)稱,
∴f(x)在(0,4)上有2個(gè)整數(shù)解,
∵f(1)=ln2,f(2)=$\frac{ln4}{2}$=ln2,f(3)=$\frac{ln6}{3}$,
∴f(x)>-a在(0,4)上的整數(shù)解為x=1,x=2.
∴$\frac{ln6}{3}$≤-a<ln2,
解得-ln2<a≤-$\frac{ln6}{3}$.
故選C.
點(diǎn)評(píng) 本題考查了不等式與函數(shù)單調(diào)性,函數(shù)圖象的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分?jǐn)?shù)段 | 頻數(shù) | 選擇題得分24分以上(含24分) |
[40,50) | 5 | 2 |
[50,60) | 10 | 4 |
[60,70) | 15 | 12 |
[70,80) | 10 | 6 |
[80,90) | 5 | 4 |
[90,100) | 5 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,+∞) | B. | [1,+∞) | C. | [-1,1] | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{5}$ | B. | $\frac{11}{6}$ | C. | $\frac{13}{7}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com