【題目】利用簡單隨機抽樣從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,頻率分布直方圖如圖所示.在這些用戶中,用電量落在區(qū)間[150,250]內(nèi)的戶數(shù)為(

A.46
B.48
C.50
D.52

【答案】D
【解析】解:這些用戶中,用電量落在區(qū)間[150,250]內(nèi)的頻率為1﹣(0.0024+0.0036+0.0024+0.0012)×50=0.52
∴用電量落在區(qū)間[150,250]內(nèi)的戶數(shù)為
100×0.52=52.
故選:D.
【考點精析】關(guān)于本題考查的頻率分布直方圖,需要了解頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點A(﹣2,0),B(0,2),點C是圓x2+y2﹣2x=0上的任意一點,則△ABC的面積最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).

(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于 兩點,其橫坐標(biāo)分別為, ,線段的中點的橫坐標(biāo)為,且, 恰為函數(shù)的零點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)在給定直角坐標(biāo)系內(nèi)直接畫出f(x)的草圖(不用列表描點),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間;

(2)當(dāng)m為何值時f(x)+m=0有三個不同的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是y1 , y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m +a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1 , y2對應(yīng)的曲線C1 , C2如圖所示.

(1)求函數(shù)y1與y2的解析式;
(2)若該商場一共投資10萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標(biāo)原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:

(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;

(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?

查看答案和解析>>

同步練習(xí)冊答案