10.如圖,⊙O是△ABC的外接圓,∠BAC的平分線AD交BC于D,交⊙O于E,連接CO并延長(zhǎng),交AE于G,交AB于F.
(Ⅰ)證明:$\frac{AF}{AB}$=$\frac{FG}{GC}$•$\frac{CD}{BD}$;
(Ⅱ)若AB=3,AC=2,BD=1,求AD的長(zhǎng).

分析 (Ⅰ)過(guò)D作DM∥AB,交AC于M,連接BE,證明$\frac{AB}{AC}=\frac{BD}{DC}$,$\frac{AF}{AC}=\frac{EG}{GC}$,即可證明:$\frac{AF}{AB}$=$\frac{FG}{GC}$•$\frac{CD}{BD}$;
(Ⅱ)求出DC,證明△ADC∽△ABE,可得比例線段,即可求AD的長(zhǎng).

解答 (Ⅰ)證明:過(guò)D作DM∥AB,交AC于M,連接BE,
∴$\frac{BD}{DC}$=$\frac{AM}{MC}$,∠BAD=∠ADM,
∵∠BAD=∠CAD,
∴∠CAD=∠ADM,
∴AM=MD,
∴$\frac{MD}{AB}=\frac{CM}{AC}$,$\frac{AB}{AC}=\frac{MD}{CM}=\frac{AM}{CM}$,
∴$\frac{AB}{AC}=\frac{BD}{DC}$,
同理$\frac{AF}{AC}=\frac{EG}{GC}$
∴$\frac{AF}{AB}$=$\frac{FG}{GC}$•$\frac{CD}{BD}$;
(Ⅱ)解:∵AD•DE=BD•CD,$\frac{AB}{AC}=\frac{BD}{DC}$,
∴DC=$\frac{2}{3}$,
∵△ADC∽△ABE,
∴$\frac{AD}{AB}=\frac{AC}{AE}$,
∴AD•AE=AB•AC,
∴AD•(AD+DE)=AB•AC,
∴AD2=AB•AC-AD•DE=AB•AC-BD•DC=3×$2-1×\frac{2}{3}$=$\frac{16}{3}$,
∴AD=$\frac{4\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查比例線段,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.雙曲線x2-y2=1的右半支與直線x=100圍成的區(qū)域內(nèi)部(不含邊界)整點(diǎn)(縱橫坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)是9800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義在(0,+∞)上的函數(shù)f(x)滿足xf′(x)-f(x)=x2lnx,且f(1)=-1,則f(x)的最小值為( 。
A.-eB.-$\frac{e}{2}$C.$\frac{e}{2}$D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC內(nèi)接于⊙O,BE是⊙O的直徑,AD是BC邊上的高.求證:BA•AC=BE•AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{AF}{DF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在三棱錐P-ABC中,已知PA⊥平面ABC,平面PAB⊥平面PBC
(1)求證:BC⊥平面PAB;
(2)若PA=AB,求二面角P-BC-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E為BC的中點(diǎn),AB=1,AD=2,PA=2.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在極坐標(biāo)系中,點(diǎn)P(2,$\frac{11π}{6}$)到直線ρsin(θ-$\frac{π}{6}$)=1的距離等于( 。
A.1B.2C.3D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x,y滿足不等式組$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,則z=2y+x的最小值為(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案